[1] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3523-3542.
[2] HU H, WEI F, HU H, et al. Semi-supervised semantic segmentation via adaptive equalization learning[C]//Advances in Neural Information Processing Systems, 2021, 34: 22106-22118.
[3] JADON S. A survey of loss functions for semantic segmentation[C]//Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2020: 1-7.
[4] PANG T, XU K, DONG Y, et al. Rethinking softmax cross-entropy loss for adversarial robustness[J]. arXiv:1905.10626, 2019.
[5] CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9268-9277.
[6] MUKHOTI J, KULHARIA V, SANYAL A, et al. Calibrating deep neural networks using focal loss[C]//Advances in Neural Information Processing Systems, 2020, 33: 15288-15299.
[7] ZHAO R, QIAN B, ZHANG X, et al. Rethinking dice loss for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), 2020: 851-860.
[8] SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]//Proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, Quebec City, QC, Canada, 2017: 379-387.
[9] TAGHANAKI S A, ZHENG Y, ZHOU S K, et al. Combo loss: handling input and output imbalance in multi-organ segmentation[J]. Computerized Medical Imaging and Graphics, 2019, 75: 24-33.
[10] KAUR H, PANNU H S, MALHI A K. A systematic review on imbalanced data challenges in machine learning: applications and solutions[J]. ACM Computing Surveys (CSUR), 2019, 52(4): 1-36.
[11] YEUNG M, SALA E, SCH?NLIEB C B, et al. Unified Focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation[J]. Computerized Medical Imaging and Graphics, 2022, 95: 102026.
[12] ZHOU B, ZHAO H, PUIG X, et al. Semantic understanding of scenes through the ADE20k dataset[J]. International Journal of Computer Vision, 2019, 127: 302-321.
[13] SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]//Proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Québec City, QC, Canada, 2017: 240-248.
[14] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]//Proceedings of the International Conference on Machine Learning, 2013: 1139-1147.
[15] BHATTACHARYA P, ZHANG D, ZHANG L, et al. A new approach to automated retinal vessel segmentation using multiscale analysis[C]//Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), 2006: 77-80.
[16] WANG J, ZHENG Z, MA A, et al. LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation[J]. arXiv:2110.08733, 2021.
[17] TONG K, WU Y. Rethinking PASCAL-VOC and MS-COCO dataset for small object detection[J]. Journal of Visual Communication and Image Representation, 2023, 93: 103830.
[18] DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. |