Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (14): 1-13.DOI: 10.3778/j.issn.1002-8331.2312-0256
• Research Hotspots and Reviews • Previous Articles Next Articles
HE Li, YAO Jiacheng, LIAO Yuxin, ZHANG Wenzhi, LU Zhaoqing, YUAN Liang, XIAO Wendong
Online:
2024-07-15
Published:
2024-07-15
何丽,姚佳程,廖雨鑫,张文智,卢赵清,袁亮,肖文东
HE Li, YAO Jiacheng, LIAO Yuxin, ZHANG Wenzhi, LU Zhaoqing, YUAN Liang, XIAO Wendong. Research Review on Deep Reinforcement Learning for Solving End-to-End Navigation Problems of Mobile Robots[J]. Computer Engineering and Applications, 2024, 60(14): 1-13.
何丽, 姚佳程, 廖雨鑫, 张文智, 卢赵清, 袁亮, 肖文东. 深度强化学习求解移动机器人端到端导航问题的研究综述[J]. 计算机工程与应用, 2024, 60(14): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2312-0256
[1] 孙溥茜. 京东物流: 智能物流体系中的配送机器人与无人机技术[J]. 机器人产业, 2022(5): 56-58. SUN P Q. JD logistics: delivery robots and drones in intelligent logistics system[J]. Robot Industry, 2022(5): 56-58. [2] 崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20. CUI W, ZHU F Z. Review of path planning algorithms for robot navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20. [3] KEGELEIRS M, GRISETTI G, BIRATTARI M. Swarm SLAM: challenges and perspectives[J]. Frontiers in Robotics and AI, 2021, 8: 618268. [4] 毛文平, 李帅永, 谢现乐, 等. 基于自适应机制改进蚁群算法的移动机器人全局路径规划[J]. 控制与决策, 2023, 38(9): 2520-2528. MAO W P, LI S Y, XIE X L, et al. Global path planning of mobile robot based on adaptive mechanism improved ant colony algorithm[J]. Control and Decision, 2023, 38(9): 2520-2528. [5] JIAN Z, ZHANG S, CHEN S, et al. A global-local coupling two-stage path planning method for mobile robots[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5349-5356. [6] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013. [7] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529-533. [8] VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in starcraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575: 350-354. [9] YUE P, XIN J, ZHAO H, et al. Experimental research on deep reinforcement learning in autonomous navigation of mobile robot[C]//Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019: 1612-1616. [10] GAO X, GAO R, LIANG P, et al. A hybrid tracking control strategy for nonholonomic wheeled mobile robot incorporating deep reinforcement learning approach[J]. IEEE Access, 2021, 9: 15592-15602. [11] 刘春晖, 王思长, 郑策, 等. 基于深度学习的室内导航机器人避障规划算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3558-3564. LIU C H, WANG S C, ZHENG C, et al. Obstacle avoidance planning algorithm for indoor navigation robot based on deep learning[J]. Journal of Jilin University (Engineering Edition), 2023, 53(12): 3558-3564. [12] FANG Q, XU X, WANG X, et al. Target‐driven visual navigation in indoor scenes using reinforcement learning and imitation learning[J]. CAAI Transactions on Intelligence Technology, 2022, 7(2): 167-176. [13] LIANG J, WEERAKOON K, GUAN T, et al. Adaptiveon: adaptive outdoor local navigation method for stable and reliable actions[J]. IEEE Robotics and Automation Letters, 2022, 8(2): 648-655. [14] JOSEF S, DEGANI A. Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6748-6755. [15] XIE Z, DAMES P. DRL-VO: learning to navigate through crowded dynamic scenes using velocity obstacles[J]. IEEE Transactions on Robotics, 2023, 39(4): 2700-2719. [16] 张德龙, 李威凌, 吴怀宇, 等. 基于学习机制的移动机器人动态场景自适应导航方法[J]. 信息与控制, 2016, 45(5): 521-529. ZHANG D L, LI W L, WU H Y, et al. Mobile robot adaptive navigation in dynamic scenarios based on learning mechanism[J]. Information and Control, 2016, 45(5): 521-529. [17] ALAMIYAN-HARANDI F, DERHAMI V, JAMSHIDI F. Combination of recurrent neural network and deep learning for robot navigation task in off-road environment[J]. Robotica, 2020, 38(8): 1450-1462. [18] LIU S, CHANG P, LIANG W, et al. Decentralized structural-rnn for robot crowd navigation with deep reinforcement learning[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), May 30-June 5, 2021: 3517-3524. [19] MA L L, LIU Y J, CHEN J, et al. Learning to navigate in indoor environments: from memorizing to reasoning[J]. arXiv:1904.06933, 2019. [20] 袁浩, 刘紫燕, 梁静, 等. 融合LSTM的深度强化学习视觉导航[J]. 无线电工程, 2022, 52(1): 161-167. YU H, LIU Y Z, LIANG J, et al. Visual navigation based on LSTM and deep reinforcement learning[J]. Radio Engineering, 2022, 52(1): 161-167. [21] 张仪, 冯伟, 王卫军, 等. 融合LSTM和PPO算法的移动机器人视觉导航[J]. 电子测量与仪器学报, 2022, 36(8): 132-140. ZHANG Y, FENG W, WANG W J, et al. Visual navi-gation of mobile robots based on LSTM and PPO alg-orithms[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(8): 132-140. [22] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [23] YANG K, WANG K, BERGASA L, et al. Unifying terrain awareness for the visually impaired through real-time semantic segmentation[J]. Sensors, 2018, 18(5): 1506. [24] 徐风尧, 王恒升. 移动机器人导航中的楼道场景语义分割[J]. 计算机应用研究, 2018, 35(6): 1863-1866. XU F Y, WANG H S. Semantic segmentation of corridor scene for mobile robot navigation[J]. Application Research of Computers, 2018, 35(6): 1863-1866. [25] MOUSAVIAN A, TOSHEV A, FI?ER M, et al. Visual representations for semantic target driven navigation[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), 2019: 8846-8852. [26] GUAN T, KOTHANDARAMAN D, CHANDRA R, et al. GA-NAV: efficient terrain segmentation for robot navigation in unstructured outdoor environments[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8138-8145. [27] DANG T V, BUI N T. Multi-scale fully convolutional network-based semantic segmentation for mobile robot navigation[J]. Electronics, Multidisciplinary Digital Publishing Institute, 2023, 12(3): 533. [28] CARLONE L, KARAMAN S. Attention and anticipation in fast visual-inertial navigation[J]. IEEE Transactions on Robotics, 2019, 35(1): 1-20. [29] CHEN C, LIU Y, KREISS S, et al. Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), 2019: 6015-6022. [30] SEYMOUR Z, THOPALLI K, MITHUN N, et al. MaAST: map attention with semantic transformers for efficient visual navigation[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13223-13230. [31] SONG C, HE Z, DONG L. A local-and-global attention reinforcement learning algorithm for multiagent cooperative navigation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7767-7777. [32] LIU S, CHANG P, HUANG Z, et al. Intention aware robot crowd navigation with attention-based interaction graph[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023: 12015-12021. [33] 孟怡悦, 郭迟, 刘经南. 基于注意力机制和奖励塑造的深度强化学习视觉目标导航方法[J]. 武汉大学学报 (信息科学版), 2023: 1-9. DOI: 10.13203/j.whugis20230193. MENG Y YUE, GUO C, LIU J N. Deep reinforcement learning visual target navigation method based on attention mechanism and reward shaping[J]. Geomatics and Information Science of Wuhan University, 2023: 1-9. DOI: 10.13203/ j.whugis20230193. [34] GUO H, HUANG Z, HO Q, et al. Autonomous navigation in dynamic environments with multi-modal perception uncertainties[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 9255-9261. [35] CAI P, WANG S, SUN Y, et al. Probabilistic end-to-end vehicle navigation in complex dynamic environments with multimodal sensor fusion[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4218-4224. [36] LI Z, ZHOU A, PU J, et al. Multi-modal neural feature fusion for automatic driving through perception-aware path planning[J]. IEEE Access, 2021, 9: 142782-142794. [37] YU X, ZHOU B, CHANG Z, et al. MMDF: multi-modal deep feature based place recognition of mobile robots with applications on cross-scene navigation[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6742-6749. [38] 王业飞, 葛泉波, 刘华平, 等. 机器人视觉听觉融合的感知操作系统[J]. 智能系统学报, 2023, 18(2): 381-389. WANG Y F, GE Q B, LIU H P, et al. A perceptual manipulation system for audio-visual fusion of robots[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 381-389. [39] MAJUMDAR A, AGGARWAL G, DEVNANI B, et al. ZSON: zero-shot object-goal navigation using multimodal goal embeddings[C]//Advances in Neural Information Processing Systems, 2022: 32340-32352. [40] SHI H, SHI L, XU M, et al. End-to-end navigation strategy with deep reinforcement learning for mobile robots[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2393-2402. [41] WU K, WANG H, ABOLFAZLI ESFAHANI M, et al. BND*-DDQN: learn to steer autonomously through deep reinforcement learning[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(2): 249-261. [42] ZHANG J, YU H, XU W. Hierarchical reinforcement learning by discovering intrinsic options[C]//Proceedings of the International Conference on Learning Representations, 2020: 1-19. [43] 王童, 李骜, 宋海荦, 等. 基于分层深度强化学习的移动机器人导航方法[J]. 控制与决策, 2022, 37(11): 2799-2807. WANG T, LI A, SONG H H, et al. Navigation method for mobile robot based on hierarchical deep reinforcement learning[J]. Control and Decision, 2022, 37(11): 2799-2807. [44] YE X, YANG Y. Hierarchical and partially observable goal-driven policy learning with goals relational graph[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 14096-14105. [45] PéREZ-D’ARPINO C, LIU C, GOEBEL P, et al. Robot navigation in constrained pedestrian environments using reinforcement learning[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 2021: 1140-1146. [46] K?STNER L, BUIYAN T, JIAO L, et al. Arena-Rosnav: towards deployment of deep-reinforcement-learning-based obstacle avoidance into conventional autonomous navigation systems[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 6456-6463. [47] K?STNER L, ZHAO X, BUIYAN T, et al. Connecting deep-reinforcement-learning-based obstacle avoidance with conventional global planners using waypoint generators[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 1213-1220. [48] K?STNER L, COX J, BUIYAN T, et al. All-in-one: a drl-based control switch combining state-of-the-art navigation planners[C]//Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022: 2861-2867. [49] YE J, BATRA D, WIJMANS E, et al. Auxiliary tasks speed up learning point goal navigation[C]//Proceedings of the 4th Conference on Robot Learning, 2021: 498-516. [50] SANG H, JIANG R, WANG Z, et al. A novel neural multi-store memory network for autonomous visual navigation in unknown environment[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2039-2046. [51] KUO C W, MA C Y, HOFFMAN J, et al. Structure-encoding auxiliary tasks for improved visual representation in vision-and-language navigation[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023: 1104-1113. [52] ZHANG W, HE L, WANG H, et al. Multiple self-s-upervised auxiliary tasks for target-driven visual navig-ation using deep reinforcement learning[J]. Entropy, Multi-disciplinary Digital Publishing Institute, 2023, 25(7): 1007. [53] 王浩杰, 陶冶, 鲁超峰. 基于碰撞预测的强化模仿学习机器人导航方法[J]. 计算机工程与应用, 2024, 60(10): 341-352. WANG H, TAO Y, LU C F. Reinforcement imitation learning method based on collision predict for robots navigation[J]. Computer Engineering and Applications, 2024, 60(10): 341-352. [54] PFEIFFER M, SHUKLA S, TURCHETTA M, et al. Reinforced imitation: sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4423-4430. [55] WANG X, HUANG Q, CELIKYILMAZ A, et al. Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 6622-6631. [56] XIAO W, YUAN L, HE L, et al. Multigoal visual navigation with collision avoidance via deep reinforcement learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-9. [57] WANG H, CHEN A G H, LI X, et al. Find what you want: learning demand?conditioned object attribute space for demand-driven navigation[C]//Advances in Neural Information Processing Systems, 2023. [58] ZHANG J, YU S, DUAN J, et al. Good time to ask: a learning framework for asking for help in embodied visual navigation[C]//Proceedings of the 20th International Conference on Ubiquitous Robots, 2023: 503-509. [59] LYU Y, SHI Y, ZHANG X. Improving target-driven visual navigation with attention on 3D spatial relationships[J]. Neural Processing Letters, 2022, 54(5): 3979-3998. [60] PAN B, PANDA R, JIN S Y, et al. LangNav: language as a perceptual representation for navigation[J]. arXiv:2310.07889, 2023. [61] ZHAO W, QUERALTA J P, WESTERLUND T. Sim-to-real transfer in deep reinforcement learning for robotics: a survey[C]//Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020: 737-744. [62] KULHANEK J, DERNER E, BABUSKA R. Visual navigation in real-world indoor environments using end-to-end deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4345-4352. [63] MURATORE F, RAMOS F, TURK G, et al. Robot learning from randomized simulations: a review[J]. Frontiers in Robotics and AI, 2022, 9: 799893. [64] 张夏禹, 陈小平. 基于目标的域随机化方法在机器人操作方面的研究[J]. 计算机应用研究, 2022, 39(10): 3084-3088. ZHANG X Y, CHEN X P. Research on goal-based domain randomization method in robot manipulation[J]. Application Research of Computers, 2022, 39(10), 3084-3088. [65] TRUONG J, CHERNOVA S, BATRA D. Bi-directional domain adaptation for sim2real transfer of embodied navigation agents[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2634-2641. [66] LEE E S, KIM J, KIM Y M. Self-supervised domain adaptation for visual navigation with global map consistency[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2022: 1868-1877. [67] FRIED D, HU R, CIRIK V, et al. Speaker-follower models for vision-and-language navigation[C]//Advances in Neural Information Processing Systems, 2018. [68] 袁诚, 朱倩倩, 赖际舟, 等. 基于模拟多位置数据增强驱动零速检测的惯性行人导航方法[J]. 中国惯性技术学报, 2022, 30(6): 709-715. YUAN C, ZHU Q Q, LAI J Z, et al. Inertial pedestrian navigation method based on simulated multi-position data augmentation driven zero-velocity detection[J]. Journal of Chinese Inertial of Technology, 2022, 30(6): 709-715. [69] FENG J, LI Y, ZHAO K, et al. DeepMM: deep learning based map matching with data augmentation[J]. IEEE Transactions on Mobile Computing, 2022, 21(7): 2372-2384. [70] WANG Z, LI J, HONG Y, et al. Scaling data generation in vision-and-language navigation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 12009-12020. [71] HE K, SI C, LU Z, et al. Frequency-enhanced data augmentation for vision-and-language navigation[C]//Advances in Neural Information Processing Systems, 2024. [72] HAO W, LI C, LI X, et al. Towards learning a generic agent for vision-and-language navigation via pre-training[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 13134-13143. [73] PASHEVICH A, SCHMID C, SUN C. Episodic tran-sformer for vision-and-language navigation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 15942-15952. [74] QIAO Y, QI Y, HONG Y, et al. Hop: history-and-order aware pretraining for vision-and-language navigation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 15397-15406. [75] HUANG B, ZHANG S, HUANG J, et al. Knowledge distilled pre-training model for vision-language-navigation[J]. Applied Intelligence, 2023, 53(5): 5607-5619. [76] BADKI A, GALLO O, KAUTZ J, et al. Binary TTC: a temporal geofence for autonomous navigation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 12941-12950. [77] GUHUR P L, TAPASWI M, CHEN S, et al. Airbert: in-domain pretraining for vision-and-language navigation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1634-1643. [78] TANG T, YU X, DONG X, et al. Auto-navigator: decoupled neural architecture search for visual navigation[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2021: 3742-3751. [79] 司马双霖, 黄岩, 何科技, 等. 视觉语言导航研究进展[J]. 自动化学报, 2023, 49(1): 1-14. SIMA S L, HUANG Y, HE K J, et al. Recent advances in vision-and-language navigation[J]. Acta Automatica Sinica, 2023, 49(1): 1-14. [80] 林谦, 余超, 伍夏威, 等. 面向机器人系统的虚实迁移强化学习综述[J]. 软件学报, 2024, 35(2): 711-738. LIN Q, YU C, WU X W, et al. Survey on virtual-to-real transfer reinforcement learning for robot systems[J]. Journal of Software, 2024, 35(2): 711-738. [81] 胡成纬, 江爱文, 王明文. 基于场景图知识融入与元学习的视觉语言导航[J]. 山西大学学报 (自然科学版), 2021, 44(3): 420-427. HU C W, JIANG A W, WANG M W. Visual language navigation based on scene graph knowledge fusion and meta-learning[J]. Journal of Shanxi University (Nat Sci Ed ), 2021, 44(3): 420-427. [82] YU W, TAN J, BAI Y, et al. Learning fast adaptation with meta strategy optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2950-2957. [83] WEN S, WEN Z, ZHANG D, et al. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning[J]. Applied Soft Computing, 2021, 110: 107605. [84] LIU N, CAI Y, LU T, et al. Real-sim-real transfer for real-world robot control policy learning with deep reinforcement learning[J]. Applied Sciences, 2020, 10(5): 1555. [85] JAYARATNE M, ALAHAKOON D, DE SILVA D. Unsupervised skill transfer learning for autonomous robots using distributed growing self organizing maps[J]. Robotics and Autonomous Systems, 2021, 144: 103835. [86] AL-HALAH Z, RAMAKRISHNAN S K, GRAUMAN K. Zero experience required: plug & play modular transfer learning for semantic visual navigation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 17010-17020. [87] ZHANG Y, ZAVLANOS M M. Distributed off-policy actor-critic reinforcement learning with policy consen-sus[C]//Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), 2019: 4674-4679. [88] XU Z, BAI Y, ZHANG B, et al. Haven: hierarchical cooperative multi-agent reinforcement learning with dual coordination mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 11735-11743. [89] CHEN C, QING C, XU X, et al. Cross parallax attention network for stereo image super-resolution[J]. IEEE Transactions on Multimedia, 2021, 24: 202-216. [90] JIN K, WANG X, SHAO F. Jointly texture enhanced and stereo captured network for stereo image super-resolution[J]. Pattern Recognition Letters, 2023, 167: 141-148. [91] OKARMA K, TECLAW M, LECH P. Application of super-resolution algorithms for the navigation of autonomous mobile robots[C]//Proceedings of the 6th International Conference on Image Processing and Communications Challenges, 2015: 145-152. |
[1] | ZHANG Zewei, ZHANG Jianxun, ZOU Hang, LI Lin, NAN Hai. Image Feature Classification Based on Multi-Agent Deep Reinforcement [J]. Computer Engineering and Applications, 2024, 60(7): 222-228. |
[2] | SI Ming, WU Bofan, HU Can, XING Weiqiang. Collaborative Control Method of Intelligent Warehouse Traffic Signal and Multi-AGV Path Planning [J]. Computer Engineering and Applications, 2024, 60(11): 290-297. |
[3] | NING Qiang, LIU Yuansheng, XIE Longyang. Application of SAC-Based Autonomous Vehicle Control Method [J]. Computer Engineering and Applications, 2023, 59(8): 306-314. |
[4] | HAN Runhai, CHEN Hao, LIU Quan, HUANG Jian. Intelligent Game Countermeasures Algorithm Based on Opponent Action Prediction [J]. Computer Engineering and Applications, 2023, 59(7): 190-197. |
[5] | HUANG Xiaohui, LING Jiahao, ZHANG Xiong, XIONG Liyan, ZENG Hui. Online Car-Hailing Dispatch Method Based on Local Position Perception Multi-Agent [J]. Computer Engineering and Applications, 2023, 59(7): 294-301. |
[6] | YANG Xiaoxiao, KE Lin, CHEN Zhibin. Review of Deep Reinforcement Learning Model Research on Vehicle Routing Problems [J]. Computer Engineering and Applications, 2023, 59(5): 1-13. |
[7] | MA Shixiong, GE Haibo, SONG Xing. Multi-Server Collaborative Task Caching Strategy in Edge Computing [J]. Computer Engineering and Applications, 2023, 59(20): 245-253. |
[8] | SONG Chuangang, LI Leixiao, GAO Haoyu. Review of Key Technologies for Blockchain System Performance Optimization [J]. Computer Engineering and Applications, 2023, 59(16): 16-30. |
[9] | HUANG Kai, QIU Xiulin, YIN Jun, YANG Yuwang. Adaptive Multi-Mode Routing Algorithm for FANET Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2023, 59(14): 268-274. |
[10] | ZHAO Liyang, CHANG Tianqing, CHU Kaixuan, GUO Libin, ZHANG Lei. Survey of Fully Cooperative Multi-Agent Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2023, 59(12): 14-27. |
[11] | WANG Xin, ZHAO Kai, QIN Bin. Review of WebAssembly Application Research for Edge Serverless Computing [J]. Computer Engineering and Applications, 2023, 59(11): 28-36. |
[12] | ZHANG Qiyang, CHEN Xiliang, CAO Lei, LAI Jun. Improved Policy Optimization Algorithm Based on Curiosity Mechanism [J]. Computer Engineering and Applications, 2023, 59(11): 63-70. |
[13] | WEI Tingting, YUAN Weilin, LUO Junren, ZHANG Wanpeng. Survey of Opponent Modeling Methods and Applications in Intelligent Game Confrontation [J]. Computer Engineering and Applications, 2022, 58(9): 19-29. |
[14] | GAO Jingpeng, HU Xinyu, JIANG Zhiye. Unmanned Aerial Vehicle Track Planning Algorithm Based on Improved DDPG [J]. Computer Engineering and Applications, 2022, 58(8): 264-272. |
[15] | ZHAO Shuxu, YUAN Lin, ZHANG Zhanping. Multi-agent Edge Computing Task Offloading [J]. Computer Engineering and Applications, 2022, 58(6): 177-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||