[1] LIM W H, BONAB M B, CHUA K H. An aggressively pruned CNN model with visual attention for near real-time wood defects detection on embedded processors[J]. IEEE Access, 2023, 11: 36834-36848.
[2] LIM W H, BONAB M B, CHUA K H. An optimized lightweight model for real-time wood defects detection based on YOLOv4-Tiny[C]//2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2022: 186-191.
[3] QAYYUM R, KAMAL K, ZAFAR T, et al. Wood defects classification using GLCM based features and PSO trained neural network[C]//2016 22nd International Conference on Automation and Computing (ICAC), 2016: 273-277.
[4] ZHANG Y, LIU S, TU W J, et al. Using computer vision and compressed sensing for wood plate surface detection[J]. Optical Engineering, 2015, 54(10): 103102.
[5] CHENG D, CHENG G, WANG X. Real-time detection method of wood defects based on deep learning[C]//2022 IEEE 8th International Conference on Computer and Communications (ICCC), 2022: 2192-2197.
[6] 靳红杰, 马顾彧, 唐梦圆, 等. 复杂环境下黄花菜识别的YOLOv7-MOCA模型[J]. 农业工程学报, 2023, 39(15): 182-189.
JIN H J, MA G Y, TANG M Y, et al. Identifying daylily in complex environment using YOLOv7-MOCA model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 182-189.
[7] LIU W, ANGUELOV D, EEHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[9] YUAN W. Accuracy comparison of YOLOv7 and YOLOv4 regarding image annotation quality for apple flower bud classification[J]. AgriEngineering, 2023, 5 (1): 413-424.
[10] LIU S, WANG Y, YU Q, et al. CEAM-YOLOv7: improved YOLOv7 based on channel expansion and attention mechanism for driver distraction behavior detection[J]. IEEE Access, 2022, 10: 129116-129124.
[11] ROSS G. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137-1149.
[13] LIU Z F, LIU X H, LI C L, et al. Fabric defect detection based on faster R-CNN[C]//9th International Conference on Graphic and Image Processing, 2018: 55-63.
[14] URBONAS A, RAUDONIS V, MASKELIUNAS R, et al, Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning[J]. Applied Sciences, 2019, 9(22): 4898-4917.
[15] DING F, ZHUANG Z, LIU Y, et al. Detecting defects on solid wood panels based on an improved SSD algorithm[J]. Sensors, 2020, 20(18): 5315-5331.
[16] TU Y, LONG Z, GUO S, et al. An accurate and real-time surface defects detection method for sawn lumber[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
[17] 朱豪, 周顺勇, 曾雅兰, 等. 基于改进YOLOv5s的木材表面缺陷检测模型[J]. 木材科学与技术, 2023, 37(2): 8-15.
ZHU H, ZHOU S Y, ZENG Y L, et al. Detection model of wood surface defects based on improved YOLOv5s[J]. Chinese Journal of Wood Science and Technology, 2023, 37(2): 8-15.
[18] 贾浩男, 徐华东, 王立海, 等. 基于改进 YOLOv5 木板材表面缺陷的定量识别[J]. 北京林业大学学报, 2023, 45(4): 147-155.
JIA H N, XU H D, WANG L H, et al. Quantitative identification of surface defects in wood paneling based on improved YOLOv5[J]. Journal of Beijing Forestry University, 2023, 45(4): 147-155.
[19] SHI J, LI Z, ZHU T, et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN[J]. Sensors, 2020, 20(16): 4398-4414.
[20] WANG C Y, ALEXEY B, MARK L H Y. Scaled-YOLOv4: scaling cross stage partial network[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13024-13033.
[21] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13728-13737.
[22] 倪昌双, 李林, 罗文婷, 等. 改进YOLOv7的沥青路面病害检测[J]. 计算机工程与应用, 2023, 59(13): 305-316.
NI C S, LI L, LUO W T, et al. Disease detection of asphalt pavement based on improved YOLOv7[J]. Computer Engineering and Applications, 2023, 59(13): 305-316.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision (ECCV 2018), 2018: 3-19.
[24] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J]. arXiv:1910.03151, 2019.
[25] SHU Y Y, YU B S, XU H M, et al. Improving fine-grained visual recognition in low data regimes via self-boosting attention mechanism[J]. arXiv:2208.00617, 2022.
[26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[27] 齐向明, 董旭. 改进YOLOv7-tiny的钢材表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(12): 176-183.
QI X M, DONG X. Improved YOLOv7-tiny algorithm for steel surface defect detection[J]. Computer Engineering and Applications, 2023, 59(12): 176-183.
[28] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. |