[1] LIU Y, SHI L, GAO Y, et al. Research on the optimized management of agricultural machinery allocation path based on teaching and learning optimization algorithm[J]. Tehni?ki Vjesnik, 2022, 29(2): 456-463.
[2] LACOUR S, BURGUN C, PERILHON C, et al. A model to assess tractor operational efficiency from bench test data[J]. Journal of Terramechanics, 2014, 54: 1-18.
[3] SONG X, WU F, LU X, et al. The classification of farming progress in rice-wheat rotation fields based on UAV RGB images and the regional mean model[J]. Agriculture, 2022, 12(2): 124.
[4] SUJATHA R, ISAKKI P. A study on crop yield forecasting using classification techniques[C]//Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering, 2016: 1-4.
[5] BEREZNICKA J, WICKI L. Do operating subsidies increase labour productivity in polish farms?[J]. Studies in Agricultural Economics, 2021, 123(3): 114-121.
[6] 吴才聪, 陈瑛, 杨卫中, 等. 基于北斗的农机作业大数据系统构建[J]. 农业工程学报, 2022, 38(5): 1-8.
WU C C, CHEN Y, YANG W Z, et al. Construction of big data system of agricultural machinery based on BeiDou[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 1-8.
[7] POTEKO J, EDER D, NOACK P O. Identifying operation modes of agricultural vehicles based on GNSS measurements[J]. Computers and Electronics in Agriculture, 2021, 185: 106105.
[8] CHEN Y, ZHANG X, WU C, et al. Field-road trajectory segmentation for agricultural machinery based on direction distribution[J]. Computers and Electronics in Agriculture, 2021, 186: 106180.
[9] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
[10] PENG D, GUI Z, WANG D, et al. Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity[J]. Nature Communications, 2022, 13(1): 5455.
[11] YANG L, WANG X, LI Y, et al. Identifying working trajectories of the wheat harvester in-field based on k-means algorithm[J]. Agriculture, 2022, 12(11): 1837.
[12] LLOYD S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2): 129-137.
[13] CHEN Y, LI G, ZHANG X, et al. Identifying field and road modes of agricultural Machinery based on GNSS recordings: a graph convolutional neural network approach[J]. Computers and Electronics in Agriculture, 2022, 198: 107082.
[14] 吴才聪,方向明. 基于北斗系统的大田智慧农业精准服务体系构建[J]. 智慧农业, 2019, 1(4): 83-90.
WU C C, FANG X M. Development of precision service system for intelligent agriculture field crop production based on BeiDou system[J]. Smart Agriculture, 2019, 1(4): 83-90.
[15] RUSTAMOV R B, HASHIMOV A M, RUSTAMOV R B, et al. Multifunctional operation and application of GPS[M/OL]. (2018-05-30)[2024-06-23], https://www.Intechopen.com/books/6540.
[16] CHEN Y, KUANG K, WU C. Trajectory classification to support effective and efficient field-road classification[J]. PeerJ Computer Science, 2024, 10: 1945.
[17] MARKETOS G, FRENTZOS E, NTOUTSI I, et al. Building real-world trajectory warehouses[C]//Proceedings of the Seventh ACM International Workshop on Data Engineering for Wireless and Mobile Access, 2008: 8-15.
[18] ZHENG Y. Trajectory data mining: an overview[J]. ACM Transaction on Intelligent Systems and Technology, 2015, 6(3): 1-41.
[19] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315: 972-976.
[20] 翟卫欣, 潘家文, 兰玉彬, 等. 基于多元振荡黏菌算法的田路分割模型参数优化方法[J]. 农业工程学报, 2022, 38(18): 176-183.
ZHAI W X, PAN J W, LAN Y B, et al. Parameter optimization of field-road trajectory segmentation model using multiplex oscillation slime mould algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 176-183.
[21] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999, 28(2): 49-60.
[22] PRELIPCEAN A C, GIDOFALVI G, SUSILO Y O. Measures of transport mode segmentation of trajectories[J]. International Journal of Geographical Information Science, 2016, 30: 1763-1784. |