[1] MAHLER J, LIANG J, NIYAZ S, et al. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics[J]. arXiv:1703.09312, 2017.
[2] 喻群超, 尚伟伟, 张驰. 基于三级卷积神经网络的物体抓取检测[J]. 机器人, 2018, 40(5): 762-768.
YU C Q, SHANG W W, ZHANG C. Object grasp detecting based on three-level convolution neural network[J]. Robot, 2018, 40(5): 762-768.
[3] 夏晶, 钱堃, 马旭东, 等. 基于级联卷积神经网络的机器人平面抓取位姿快速检测[J]. 机器人, 2018, 40(6): 794-802.
XIA J, QIAN K, MA X D, et al. Fast planar grasp pose detection for robot based on cascaded deep convolutional neural networks[J]. Robot, 2018, 40(6): 794-802.
[4] MORALES E F,ZARAGOZA J H. An introduction to reinforcement learning[J]. IEEE, 2011, 11(4): 219-354.
[5] 王鹭. 基于深度强化学习的机械臂密集堆叠物体智能抓取研究[D]. 洛阳: 河南科技大学, 2022.
WANG L. Research on intelligent grasping of densely stacked objects by robotic arm based on deep reinforcement learning [D]. Luoyang: Henan University of Science and Technology, 2022.
[6] DOGAR M R, SRINIVASA S S. A planning framework for non-prehensile manipulation under clutter and uncertainty[J]. Autonomous Robots, 2012, 33: 217-236.
[7] ZENG A, SONG S, WELKER S, et al. Learning synergies between pushing and grasping with self-supervised deep reinforcement learning[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018: 4238-4245.
[8] YANG Z, SHANG H. Robotic pushing and grasping knowledge learning via attention deep Q-learning network[C]//Proceedings of the 13th International Conference on Knowledge Science, Engineering and Management, 2020: 223-234.
[9] EITEL A, HAUFF N, BURGARD W. Learning to singulate objects using a push proposal network[J]. arXiv:1707.08101, 2017.
[10] JAAKKOLA T, SINGH S, JORDAN M. Reinforcement learning algorithm for partially observable Markov decision problems[C]//Proceedings of the 7th International Conference on Neural Information Processing Systems, 1994: 345-352.
[11] 羊波, 王琨, 马祥祥, 等. 多智能体强化学习的机械臂运动控制决策研究[J]. 计算机工程与应用, 2023, 59(6): 318-325.
YANG B, WANG K, FAN B, et al. Research on motion control method of manipulator based on reinforcement learning[J]. Computer Engineering and Applications, 2023, 59(6): 318-325.
[12] 宁强, 刘元盛, 谢龙洋. 基于SAC的自动驾驶车辆控制方法应用[J]. 计算机工程与应用, 2023, 59(8): 306-314.
N Q, LIU Y S, XIE L Y. Application of SAC-based autonomous vehicle control method[J]. Computer Engineering and Applications, 2023, 59(8): 306-314.
[13] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013.
[14] HASSELT V H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 2094-2100.
[15] ROHMER E, SINGH S P N, FREESE M. V-rep: a versatile and scalable robot simulation framework[C]//Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 1321-1326.
[16] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[17] BADRINARAYANAN V, KENDALL A, CIPOLLA R. A deep convolutional encoder-decoder architecture for image segmentation[J]. arXiv:1511.00561, 2015.
[18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |