[1] 孙庆峰, 陈发虎, COLIN C, 等. 黏土矿物在气候环境变化研究中的应用进展[J]. 矿物学报, 2011, 31(1): 146-152.
SUN Q F, CHEN F H, COLIN C, et al. Application progress of clay minerals in the researches of climate and environment[J]. Acta Mineralogica Sinica, 2011, 31(1): 146-152.
[2] 胡圆圆, 胡再元. 扫描电镜在碎屑岩储层黏土矿物研究中的应用[J]. 四川地质学报, 2012, 32(1): 25-28.
HU Y Y, HU Z Y. The application of SEM to the study of clay minerals from clastic rock reservoir[J]. Acta Geologica Sichuan, 2012, 32(1): 25-28.
[3] 葛磊, 李娟, 彭飚. 鄂尔多斯砒砂岩微观结构特征研究[J]. 西部大开发 (土地开发工程研究), 2019, 4(8): 36-42.
GE L, LI J, PENG B. Study on microstructure character-istics of soft rocks in Ordos[J]. Land Development and Engineering Research, 2019, 4(8): 36-42.
[4] 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903.
WANG H Y, PAN H T, LIU G N. Face recognition method based on attention mechanism and curriculum learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903.
[5] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[6] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
[7] 胡嫚嫚. 基于改进的卷积神经网络和多尺度特征融合的乳腺疾病图像分类[D]. 上海: 东华大学, 2022.
HU M M. Breast disease image classification based on improved convolutional neural network and multi-scale feature fusion[D]. Shanghai: Donghua University, 2022.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[9] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[12] HUANG G, LIU Z, MAATEN V D L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[13] LI C, WANG D. Application of machine learning techniques in mineral classification for scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) images[J]. Journal of Petroleum Science and Engineering, 2020, 200(3): 108178.
[14] ZHANG Y, LI M, HAN S, et al. Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms[J]. Sensors, 2019, 19(18): 3914.
[15] CHEN Z H. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay shale samples in western Canada sedimentary basin[J]. Computers & Geosciences, 2020, 138: 104450.
[16] LIU C, LI M, ZHANG Y, et al. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm[J]. Minerals, 2019, 9(9): 516.
[17] 刘珏先, 滕奇志, 王正勇, 等. 基于协同表示的多特征融合岩石分类[J]. 计算机应用, 2016, 36(3): 854-858.
LIU J X, TENG Q Z, WANG Z Y, et al. Rock classification of multi-feature fusion based on collaborative representation[J]. Journal of Computer Applications, 2016, 36(3): 854-858.
[18] 白林, 魏昕, 刘禹, 等. 基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12): 2053-2058.
BAI L, WEI X, LIU Y, et al. Rock thin section image recognition and classification based on VGG model[J]. Geological Bulletin of China, 2019, 38(12): 2053-2058.
[19] 白林, 姚钰, 李双涛, 等. 基于深度学习特征提取的岩石图像矿物成分分析[J]. 中国矿业, 2018, 27(7): 178-182.
BAI L, YAO Y, LI S T, et al. Mineral composition analysis of rock image based on deep learning feature extraction[J]. China Mining Magazine, 2018, 27(7): 178-182.
[20] 彭伟航, 白林, 商世为, 等. 基于改进Inception V3模型的常见矿物智能识别[J]. 地质通报, 2019, 38(12): 2059-2066.
PENG W H, BAI L, SHANG S W, et al. Common mineral intelligent recognition based on improved InceptionV3[J]. Geological Bulletin of China, 2019, 38 (12): 2059-2066.
[21] 郭艳军, 周哲, 林贺洵, 等. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 2020, 27(5): 39-47.
GUO Y J, ZHOU Z, LIN H X, et al. The mineral intelligence identification method based on deep learning algorithms[J]. Earth Science Frontiers, 2020, 27(5): 39-47.
[22] LIU Y, ZHANG Z, LIU X, et al. Ore image classification based on small deep learning model: evaluation and optimization of model depth, model structure and data size[J]. Minerals Engineering, 2021, 172: 107020.
[23] ZHOU W, WANG H, WAN Z. Ore image classification based on improved CNN[J]. Computers & Electrical Engineering, 2022, 99: 107819.
[24] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021: 43(2): 652-662.
[25] 王燕, 王振宇. 改进Res2Net和注意力机制的高光谱图像分类[J]. 计算机工程与应用, 2023, 59(19): 151-158.
WANG Y, WANG Z Y. Hyperspectral image classification based on Res2Net and attention mechanism[J]. Computer Engineering and Applications, 2023, 59(19): 151-158.
[26] 董乙杉, 郭靖圆, 李明泽, 等. 基于反向瓶颈和LCBAM设计的X光违禁品检测[J]. 计算机科学与探索, 2024, 18(5): 1259-1270.
DONG Y S, GUO J Y, LI M Z, et al. An X-ray prohibited items detection model based on inverted bottleneck and attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1259-1270.
[27] MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems, 2014: 2204-2212.
[28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[29] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[30] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[31] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362.
QI X H, ZHI M. A review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362.
[32] 黄英来, 姜忠良. 改进残差网络甜瓜叶片病害的识别研究[J]. 计算机工程与应用, 2024, 60(15): 189-197.
HUANG Y L, JIANG Z L. Research on identification of melon leaf diseases with improved residual network[J]. Computer Engineering and Applications, 2024, 60(15): 189-197. |