[1] LEVINSON J, ASKELAND J, BECKER J, et al. Towards fully autonomous driving: systems and algorithms[C]//Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2011: 163-168.
[2] YURTSEVER E, LAMBERT J, CARBALLO A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2020, 8: 58443-58469.
[3] BADUE C, GUIDOLINI R, CARNEIRO R V, et al. Self-driving cars: a survey[J]. Expert Systems with Applications, 2021, 165: 113816.
[4] LIU L, OUYANG W L, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318.
[5] MAO J G, SHI S S, WANG X G, et al. 3D object detection for autonomous driving: a comprehensive survey[J]. International Journal of Computer Vision, 2023, 131(8): 1909-1963.
[6] ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232.
[7] HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845-860.
[8] ENGELS F, HEIDENREICH P, WINTERMANTEL M, et al. Automotive radar signal processing: research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 865-878.
[9] CHEN Q P, XIE Y F, GUO S F, et al. Sensing system of environmental perception technologies for driverless vehicle: a review of state of the art and challenges[J]. Sensors and Actuators A: Physical, 2021, 319: 112566.
[10] ZHOU T H, YANG M M, JIANG K, et al. MMW radar-based technologies in autonomous driving: a review[J]. Sensors, 2020, 20(24): 7283.
[11] JIANG M J, XU G, PEI H, et al. 4D high-resolution imagery of point clouds for automotive mmWave radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(1): 998-1012.
[12] BRISKEN S, RUF F, H?HNE F. Recent evolution of automotive imaging radar and its information content[J]. IET Radar, Sonar & Navigation, 2018, 12(10): 1078-1081.
[13] PALFFY A, POOL E, BARATAM S, et al. Multi-class road user detection with 3+ 1D radar in the view-of-delft dataset[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4961-4968.
[14] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12689-12697.
[15] XU B W, ZHANG X Y, WANG L, et al. RPFA-net: a 4D RaDAR pillar feature attention network for 3D object detection[C]//Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE, 2021: 3061-3066.
[16] TAN B, MA Z X, ZHU X C, et al. 3-D object detection for multiframe 4-D automotive millimeter-wave radar point cloud[J]. IEEE Sensors Journal, 2023, 23(11): 11125-11138.
[17] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[18] STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10337-10346.
[19] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489.
[20] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
[21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[22] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[24] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[25] YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[26] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[27] SCHUMANN O, HAHN M, SCHEINER N, et al. RadarScenes: a real-world radar point cloud data set for automotive applications[C]//Proceedings of the 2021 IEEE 24th International Conference on Information Fusion. Piscataway: IEEE, 2021: 1-8.
[28] SHEENY M, DE PELLEGRIN E, MUKHERJEE S, et al. RADIATE: a radar dataset for automotive perception in bad weather[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 1-7.
[29] MEYER M, KUSCHK G. Automotive radar dataset for deep learning based 3D object detection[C]//Proceedings of the 2019 16th European Radar Conference, 2019: 129-132.
[30] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[31] SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 770-779.
[32] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems 30, 2017: 5099-5108.
[33] SHI W J, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1708-1716.
[34] FENT F, BAUERSCHMIDT P, LIENKAMP M. RadarGNN: transformation invariant graph neural network for radar-based perception[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2023: 182-191. |