计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 145-154.DOI: 10.3778/j.issn.1002-8331.2401-0160

• 模式识别与人工智能 • 上一篇    下一篇

基于图神经网络的4D毫米波雷达目标检测方法

黄梓峰,王洪雁,马嘉康   

  1. 1.浙江理工大学 计算机科学与技术学院,杭州 310018
    2.浙江理工大学 信息科学与工程学院,杭州 310018
  • 出版日期:2025-05-15 发布日期:2025-05-15

4D Millimeter-Wave Radar Target Detection Method Based on Graph Neural Network

HUANG Zifeng, WANG Hongyan, MA Jiakang   

  1. 1.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2.School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 4D毫米波雷达具有体积小、成本低、全天候运行、测速能力强、距离分辨率高等优势,非常适用于自动驾驶系统。然而,目前基于毫米波雷达的目标检测方法通常直接移植于激光雷达,无法有效适应于毫米波雷达点云特征,因此检测性能较差。针对此问题,提出一种基于图神经网络的4D毫米波雷达目标检测方法。设计基于拓扑图以及初始特征图传播信息并更新点云特征的图神经网络,该网络作为点云特征编码器可输出高可分的节点嵌入;将带有节点嵌入的点云投影至二维鸟瞰图;利用具有通道注意力机制的主干网络抽取多尺度特征,并于通道维上进行融合以输出融合特征图;将融合特征图输入检测头以获得目标的有效检测。基于公开数据集View-of-Delft的实验结果表明,与现有主流算法相比,所提方法具有较好的目标检测性能。

关键词: 自动驾驶, 4D毫米波雷达, 目标检测, 图神经网络

Abstract: The 4D millimeter-wave radar has the advantages of small size, low cost, all-weather operation, strong speed measurement ability, and high distance resolution, making it very suitable for autonomous driving systems. However, the existing target detection methods based on 4D millimeter-wave radar are usually directly transplanted from lidar, which cannot effectively adapt to the millimeter-wave radar point cloud features, resulting in poor detection performance. Concerning this, a 4D millimeter-wave radar target detection method based on graph neural network is developed. In the proposed method, a graph neural network based on topological graph and feature propagation is designed to update the point cloud features, which serves as a point cloud feature encoder to output high-dimensional node embeddings. The point cloud with node embeddings is projected onto a two-dimensional bird’s eye view. A backbone network with a channel attention mechanism is used to extract its multi-scale features and fuse them in the channel dimension to output fused feature maps. The fused feature maps are input to the detection head to achieve effective target detection. Experimental results on the public dataset View-of-Delft demonstrate that the proposed method has better target detection performance compared to existing mainstream algorithms.

Key words: autonomous driving, 4D millimeter-wave radar, target detection, graph neural network