[1] GU Y, YU K Q, SONG Z, et al. Distributed hypergraph processing using intersection graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(7): 3182-3195.
[2] YU D H, GU Y, XIONG C Y, et al. CompleQA: benchmarking the impacts of knowledge graph completion methods on question answering[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 12748-12755.
[3] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[4] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[5] 梁梅霖, 段友祥, 昌伦杰, 等. 邻域信息分层感知的知识图谱补全方法[J]. 计算机工程与应用, 2024, 60(2): 147-153.
LIANG M L, DUAN Y X, CHANG L J, et al. Knowledge graph completion method based on neighborhood hierarchical perception[J]. Computer Engineering and Applications, 2024, 60(2): 147-153.
[6] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[7] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[8] XIAO H, HUANG M L, ZHU X Y, et al. From one point to a manifold[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 1315-1321.
[9] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[10] CHAMI I, WOLF A, JUAN D C, et al. Low-dimensional hyperbolic knowledge graph embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6901-6914.
[11] NICKEL M, TRESP V, KRIEGEL H P, et al. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011: 809-816.
[12] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015.
[13] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 2071-2080.
[14] KAZEMI S M, POOLE D, KAZEMI S M, et al. SimplE embedding for link prediction in knowledge graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 4289-4300.
[15] BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5184-5193.
[16] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 1811-1818.
[17] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 327-333.
[18] JIANG X T, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 978-987.
[19] BALA?EVI? I, ALLEN C, HOSPEDALES T M. Hypernetwork knowledge graph embeddings[C]//Proceedings of the 28th International Conference on Artificial Neural Networks. Cham: Springer, 2019: 553-565.
[20] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 3009-3016.
[21] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web. Cham: Springer, 2018: 593-607.
[22] WEN J F, LI J X, MAO Y Y, et al. On the representation and embedding of knowledge bases beyond binary relations[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 1300-1307.
[23] ZHANG R C, LI J P, MEI J J, et al. Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1185-1194.
[24] LIU Y, YAO Q M, LI Y, et al. Generalizing tensor decomposition for N-ary relational knowledge bases[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 1104-1114.
[25] PANG J, QIN H C, LIU Y, et al. Two birds with one stone: a link prediction model for knowledge hypergraph based on fully-connected tensor decomposition[C]//Proceedings of the 19th International Conference on Advanced Data Mining and Applications. Cham: Springer, 2023: 78-90.
[26] FATEMI B, TASLAKIAN P, VAZQUEZ D, et al. Knowledge hypergraphs: prediction beyond binary relations[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 2191-2197.
[27] LIU Y, YAO Q M, LI Y, et al. Role-aware modeling for N-ary relational knowledge bases[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2660-2671.
[28] CHEN Z R, WANG X, WANG C X, et al. PosKHG: a position-aware knowledge hypergraph model for link prediction[J]. Data Science and Engineering, 2023, 8(2): 135-145.
[29] GUAN S P, JIN X L, WANG Y Z, et al. Link prediction on N-ary relational data[C]//Proceedings of the World Wide Web Conference 2019. New York: ACM, 2019: 583-593.
[30] GUAN S P, JIN X L, GUO J F, et al. Link prediction on N-ary relational data based on relatedness evaluation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 672-685.
[31] ROSSO P, YANG D Q, CUDRé-MAUROUX P, et al. Beyond triplets: hyper-relational knowledge graph embedding for link prediction[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 1885-1896.
[32] GUAN S P, JIN X L, GUO J F, et al. NeuInfer: knowledge inference on N-ary facts[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6141-6151.
[33] HU Z W, GUTIéRREZ-BASULTO V, XIANG Z L, et al. HyperFormer: enhancing entity and relation interaction for hyper-relational knowledge graph completion[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 803-812.
[34] GALKIN M, TRIVEDI P, MAHESHWARI G, et al. Message passing for hyper-relational knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7346-7359.
[35] WANG C X, LI Z, WANG X, et al. EnhancE: enhanced entity and relation embedding for knowledge hypergraph link prediction[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 115-118.
[36] WANG C X, WANG X, LI Z, et al. HyConvE: a novel embedding model for knowledge hypergraph link prediction with convolutional neural networks[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 188-198.
[37] LI Z, WANG C X, WANG X, et al. HJE: joint convolutional representation learning for knowledge hypergraph completion[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 3879-3892.
[38] YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: a new method of training graph convolutional networks on hypergraphs[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 1511-1522.
[39] 郭正山, 左劼, 段磊, 等. 面向知识超图链接预测的生成对抗负采样方法[J]. 计算机研究与发展, 2022, 59(8): 1742-1756.
GUO Z S, ZUO J, DUAN L, et al. A generative adversarial negative sampling method for knowledge hypergraph link prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. |