计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 133-144.DOI: 10.3778/j.issn.1002-8331.2401-0234

• 模式识别与人工智能 • 上一篇    下一篇

联合预训练模型和层级注意力的知识超图链接预测

庞俊,梅杰,林晓丽,王蒙湘   

  1. 1.武汉科技大学 计算机科学与技术学院,武汉 430065
    2.智能信息处理与实时工业系统湖北省重点实验室,武汉 430065
    3.中国标准化研究院,北京 100088
  • 出版日期:2025-05-15 发布日期:2025-05-15

Link Prediction in Knowledge Hypergraph Combining Pretrained Model and Hierarchical Attention

PANG Jun, MEI Jie, LIN Xiaoli, WANG Mengxiang   

  1. 1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan 430065, China
    3.China Institute of Standardization, Beijing 100088, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 知识超图(knowledge hypergraph,KHG)是超图结构的知识图谱。现有知识超图链接预测模型主要存在以下不足:模型输入时将实体和关系简单地表示为嵌入层的ID(索引),而没有考虑实体和关系之间复杂的联系和语义;编码时只考虑位置和角色信息,而忽略了实体邻域结构和多元关系间的联系,导致实体和关系表示能力不足;模型训练时采样的负样本质量不够高,不能帮助模型高效学习样本特征。针对以上问题,提出一种联合预训练模型和层级注意力的知识超图链接预测模型(link prediction in knowledge hypergraph combining pretrained model and hierarchical attention,LPPH)。该模型引入预训练模型和简化的团式展开方法初始化超图嵌入,将实体和关系之间复杂联系和语义融入至实体和关系嵌入中;编码时使用层级注意力机制聚合实体邻域结构信息以增强实体表示,并使用实体-关系融合操作增强关系表示;提出一种基于过滤机制和主动学习的负样本选择策略,实现模型的高效训练。真实数据集上的大量实验结果验证了LPPH能有效提高知识超图链接预测的效果。

关键词: 知识超图, 链接预测, 预训练模型, 层级注意力

Abstract: Knowledge hypergraph (KHG) is the knowledge graph of hypergraph structure. Existing methods of KHG link prediction mainly have the following shortcomings: Entities and relations are simply represented as the ID (index) of the embedding layer during input, without considering the complex relations and semantics between them. Only location and role information are taken into account when encoding, while disregarding the connection between entity neighborhood structure and multiple relations, resulting in insufficient representation ability of entities and relations. The quality of negative samples sampled during model training is not high enough to help the model learn sample features efficiently. To address these issues, a link prediction method in knowledge hypergraph combining pretrained model and hierarchical attention (LPPH) is proposed. The model utilizes a pretrained model and a simplified clique expansion method to initialize hypergraph embeddings, integrating complex relations and semantics between entities and relation into their respective embeddings. When encoding, a hierarchical attention mechanism is employed to aggregate information from entity neighborhood structures for enhanced entity representation, and an entity-relation fusion operation is used to enhance relation representation. Finally, a negative sample selection strategy based on filtering mechanism and active learning is proposed to achieve efficient training of the model. Extensive experimental results on real datasets demonstrate that LPPH can effectively improve the efficiency of knowledge hypergraph link prediction.

Key words: knowledge hypergraph, link prediction, pretrained model, hierarchical attention