[1] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008: 1247-1250.
[2] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[3] FABIAN M, GJERGJI K, GERHARD W. Yago: a core of semantic knowledge unifying wordnet and wikipedia[C]// Proceedings of the 16th International World Wide Web Conference, 2007: 697-706.
[4] LI S, XUE Q, WANG P. MDAR: a knowledge-graph-enhanced multi-task recommendation system based on a DeepAFM and a relation-fused multi-gead graph attention network[J]. Applied Sciences, 2023, 13(15): 8697.
[5] SAXENA A, KOCHSIEK A, GEMULLA R. Sequence-to-sequence knowledge graph completion and question answering[J]. arXiv:2203.10321, 2022.
[6] EBEID I A. MedGraph: a semantic biomedical information retrieval framework using knowledge graph embedding for PubMed[J]. Frontiers in Big Data, 2022, 5: 965619.
[7] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013.
[8] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[9] VASHISHTH S, SANYAL S, NITIN V, et al. Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3009-3016.
[10] EBRAHIMI M S, ABADI H K. Study of residual networks for image recognition[C]//Proceedings of the 2021 Computing Conference on Intelligent Computing, 2021: 754-763.
[11] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014.
[12] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
[13] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long papers), 2015: 687-696.
[14] ZHANG X, YANG Q, XU D. TranS: transition-based knowledge graph embedding with synthetic relation representation[J]. arXiv:2204.08401, 2022.
[15] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011: 3104482-3104584.
[16] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[17] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080.
[18] LI J, YANG Y. STaR: knowledge graph embedding by scaling, translation and rotation[C]//Proceedings of the International Conference on AI and Mobile Services. Cham: Springer International Publishing, 2022: 31-45.
[19] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[J]. arXiv:1712. 02121, 2017.
[20] JIANG X, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019: 978-987.
[21] TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality, 2015: 57-66.
[22] LIN X V, SOCHER R, XIONG C. Multi-hop knowledge graph reasoning with reward shaping[J]. arXiv:1808.10568, 2018.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[24] SUN Z, DENG Z H, NIE J Y, et al. Rotate: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019.
[25] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on The Semantic Web, Heraklion, Crete, Greece, 2018: 593-607.
[26] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3060-3067.
[27] JIANG D, WANG R, YANG J, et al. Kernel multi-attention neural network for knowledge graph embedding[J]. Knowledge-Based Systems, 2021, 227: 107188.
[28] ZHANG Z, LI Z, LIU H, et al. Multi-scale dynamic convolutional network for knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(5): 2335-2347. |