[1] OSCO L P, MARCATO J J, MARQUES RAMOS A P, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102456.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[3] 张秀再, 邱野, 沈涛. 基于改进SSD算法的地铁场景小行人目标检测[J/OL]. 计算机研究与发展: 1-13[2024-08-16]. http://kns.cnki.net/kcms/dtail/11.1777.TP.20240603.1111.011.
html.
ZHANG X Z, QIU Y, SHEN T. Small pedestrian target detection in subway scene based on improved SSD algorithm[J/OL]. Journal of Computer Research and Development: 1-13[2024-08-16]. http://kns.cnki.net/kcms/dtail/11.1777.TP.20240603.
1111.011.html.
[4] 石洋宇, 左景, 谢承杰, 等. 多尺度融合与FMB改进的YOLOv8异常行为检测方法[J]. 计算机工程与应用, 2024, 60(9): 101-110.
SHI Y Y, ZUO J, XIE C J, et al. Improved YOLOv8 method for anomaly behavior detection with multi-scale fusion and FMB[J]. Computer Engineering and Applications, 2024, 60(9): 101-110.
[5] 李姝, 李思远, 刘国庆. 基于YOLOv8无人机航拍图像的小目标检测算法研究[J]. 小型微型计算机系统, 2024, 45(9): 2165-2174.
LI S, LI S Y, LIU G Q. Research on small target detection algorithm based on YOLOv8 UAV aerial images[J]. Journal of Chinese Computer Systems, 2024, 45(9): 2165-2174.
[6] 赵志宏, 郝子晔. 改进YOLOv8的航拍小目标检测方法: CRP-YOLO[J]. 计算机工程与应用, 2024, 60(13): 209-218.
ZHAO Z H, HAO Z Y. Improved YOLOv8 aerial small target detection method: CRP-YOLO[J]. Computer Engineering and Applications, 2024, 60(13): 209-218.
[7] YE Z C, PENG Y P, LIU W C, et al. An efficient adjacent frame fusion mechanism for airborne visual object detection[J]. Drones, 2024, 8(4): 144.
[8] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[9] XU S B, ZHENG S C, XU W H, et al. HCF-net: hierarchical context fusion network for infrared small object detection[J]. arXiv:2403.10778, 2024.
[10] KHAN S, LIEW C F, YAIRI T, et al. Unsupervised anomaly detection in unmanned aerial vehicles[J]. Applied Soft Computing, 2019, 83: 105650.
[11] YU Y, ZHANG Y, CHENG Z Y, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107079.
[12] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[J]. arXiv: 2404.10518, 2024.
[13] TRAN T M, VU T N, NGUYEN T V, et al. UIT-ADrone: a novel drone dataset for traffic anomaly detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 5590-5601.
[14] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024.
[15] WU T H, LI B Y, LUO Y H, et al. MTU-Net: multilevel TransUNet for space-based infrared tiny ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5601015.
[16] SHAFIEE M J, CHYWL B, LI F, et al. Fast YOLO: a fast you only look once system for real-time embedded object detection in video[J]. arXiv:1709.05943, 2017.
[17] WU W T, LIU H, LI L L, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image[J]. PLoS One, 2021, 16(10): e0259283.
[18] LI Y, FAN Q, HUANG H, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[19] PI Y L, NATH N D, BEHZADAN A H. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery[J]. Advanced Engineering Informatics, 2020, 43: 101009.
[20] WANG S H, WANG Y D, CHANG Y J, et al. EBSE-YOLO: high precision recognition algorithm for small target foreign object detection[J]. IEEE Access, 2023, 11: 57951-57964.
[21] XAVIER A J, VALARMATHY S, GOWRISHANKAR J, et al. Multi-class flower counting model with Zha-KNN labelled images using Ma-Yolov9[J]. International Journal of Advanced Computer Science and Applications, 2024, 15(6): 416-426.
[22] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6568-6577.
[23] ZHU X K, LU S C, WANG X. TPH-YOLOv5: improved YOLOv5 based on Transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVFInternational Conference on Computer Vision Workshops, Montreal, BC, Canada, 2021: 2778-2788.
[24] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[25] 王舒梦, 徐慧英, 朱信忠, 等. 基于改进YOLOv8n航拍轻量化小目标检测算法: PECS-YOLO[J/OL]. 计算机工程: 1-16[2024-08-14]. https://doi.org/10.19678/j.issn.1000-3428.
0069353.
WANG S M, XU H Y, ZHU X Z, et al. Lightweight small object detection algorithm based on improved YOLOv8n aerial photography: PECS-YOLO[J/OL]. Computer Engineering: 1-16[2024-08-14]. https://doi.org/10.19678/j.issn. 1000-3428.0069353.
[26] 蒋伟, 王万虎, 杨俊杰. AEM-YOLOv8s: 无人机航拍图像的小目标检测[J]. 计算机工程与应用, 2024, 60(17): 191-202.
JIANG W, WANG W H, YANG J J. AEM-YOLOv8s: small target detection algorithm for UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(17): 191-202.
[27] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
[28] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[29] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[30] ZHANG Y, YE M, ZHU G Y, et al. FFCA-YOLO for small object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611215. |