[1] 徐洪俊, 唐自强, 张锦东, 等. 钢材表面缺陷检测的YOLOv5s算法优化研究[J]. 计算机工程与应用, 2024, 60(7): 306-314.
XU H J, TANG Z Q, ZHANG J D, et al. Research on optimization of YOLOv5s detection algorithm for steel surface defect[J]. Computer Engineering and Applications, 2024, 60(7): 306-314.
[2] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[3] 梁礼明, 龙鹏威, 冯耀, 等. 改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测[J]. 光学 精密工程, 2024, 32(8): 1227-1240.
LIANG L M, LONG P W, FENG Y, et al. Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J]. Optics and Precision Engineering, 2024, 32(8): 1227-1240.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference Computer Vision. Cham: Springer, 2016: 21-37.
[6] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[7] 盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118-2129.
SHENG S, DUAN X H, HU W K, et al. Dynamic-YOLOX: detection model for apple leaf disease in complex background[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2118-2129.
[8] ZENG S, YANG W Z, JIAO Y Y, et al. SCA-YOLO: a new small object detection model for UAV images[J]. The Visual Computer, 2024, 40(3): 1787-1803.
[9] 周孟然, 王昊男, 高立鹏, 等. 基于YOLOv5s-FCS的钢材表面缺陷检测[J]. 科学技术与工程, 2024, 24(14): 5901-5910.
ZHOU M R, WANG H N, GAO L P, et al. Steel surface defect detection based on YOLOv5s-FCS[J]. Science Technology and Engineering, 2024, 24(14): 5901-5910.
[10] 刘毅, 蒋三新. 基于改进YOLOX的钢材表面缺陷检测研究[J]. 现代电子技术, 2024, 47(9): 131-138.
LIU Y, JIANG S X. Steel surface defect detection algorithm based on improved YOLOX[J]. Modern Electronics Technique, 2024, 47(9): 131-138.
[11] 李相垚, 侯红玲, 杨澳, 等. 面向钢材表面缺陷检测的DCS-YOLOv8算法研究[J/OL]. 机械科学与技术: 1-10[2024-11-07]. https://doi.org/10.13433/j.cnki.1003-8728.20240128.
LI X Y, HOU H L, YANG A, et al. Research on DCS-YOLOv8 algorithm for steel surface defect detection[J/OL]. Mechanical Science and Technology for Aerospace Engineering: 1-10[2024-11-07]. https://doi.org/10.13433/j.cnki.1003-8728.20240128.
[12] 徐薪羽, 沈通, 吕佳. 基于改进YOLOv8算法的钢材表面缺陷检测[J]. 自动化应用, 2024(15): 6-10.
XU X Y, SHEN T, LV J. Steel surface defect detection based on improved YOLOv8 algorithm[J]. Automation Application, 2024(15): 6-10.
[13] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[15] XIA Z F, PAN X R, SONG S J, et al. DAT++: spatially dynamic vision transformer with deformable attention[J]. arXiv:2309.01430, 2023.
[16] YU Y, ZHANG Y, CHENG Z Y, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107079.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[18] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[19] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
[20] YEUNG C C, LAM K M. Efficient fused-attention model for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2510011.
[21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[22] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[23] CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 27706-27716.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19. |