[1] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022: 1-16.
[2] BYUN S, SHIN I K, MOON J, et al. Road traffic monitoring from UAV images using deep learning networks[J]. Remote Sensing, 2021, 13(20): 4027.
[3] PRATAMA M T, KIM S, OZAWA S, et al. Deep learning-based object detection for crop monitoring in soybean fields[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020: 1-7.
[4] AMIT S N K B, AOKI Y. Disaster detection from aerial imagery with convolutional neural network[C]//Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing, 2017: 239-245.
[5] PI Y, NATH N D, BEHZADAN A H. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery[J]. Advanced Engineering Informatics, 2020, 43: 101009.
[6] REDMON J. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real -time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[8] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21-37.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[13] TANG G, NI J, ZHAO Y, et al. A survey of object detection for UAVs based on deep learning[J]. Remote Sensing, 2023, 16(1): 149.
[14] GAO T, NIU Q Q, ZHANG J, et al. Global to local: a scale-aware network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5615614.
[15] ZENG S, YANG W Z, JIAO Y Y, et al. SCA-YOLO: a new small object detection model for UAV images[J]. The Visual Computer, 2024, 40(3): 1787-1803.
[16] XI Y, JIA W J, MIAO Q G, et al. FiFoNet: fine-grained target focusing network for object detection in UAV images[J]. Remote Sensing, 2022, 14(16): 3919.
[17] LI J, XIE C, WU S Z, et al. UAV-YOLOv5: a swin-transformer-enabled small object detection model for long-range UAV images[J]. Annals of Data Science, 2024, 11(4): 1109-1138.
[18] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, 2021: 2778-2788.
[19] JIANG L J, YUAN B X, DU J W, et al. MFFSODNet: multiscale feature fusion small object detection network for UAV aerial images[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5015214.
[20] WANG Y M, ZOU H, YIN M, et al. SMFF-YOLO: a scale-adaptive YOLO algorithm with multi-level feature fusion for object detection in UAV scenes[J]. Remote Sensing, 2023, 15(18): 4580.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[22] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[23] DONG D H, LI J Z, LIU H Y, et al. EA-YOLO: an efficient and accurate UAV image object detection algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2025, 20(1): 61-68.
[24] CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, 2021: 213-226.
[25] WALAMBE R, MARATHE A, KOTECHA K. Multiscale object detection from drone imagery using ensemble transfer learning[J]. Drones, 2021, 5(3): 66.
[26] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[27] ZHANG L H, XIONG N, PAN X H, et al. Improved object detection method utilizing YOLOv7-tiny for unmanned aerial vehicle photographic imagery[J]. Algorithms, 2023, 16(11): 520.
[28] ZHANG Z X. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[29] MA C J, FU Y Y, WANG D Y, et al. YOLO-UAV: object detection method of unmanned aerial vehicle imagery based on efficient multi-scale feature fusion[J]. IEEE Access, 2023, 11: 126857-126878.
[30] LIU H Y, DUAN X H, CHEN H N, et al. DBF-YOLO: UAV small targets detection based on shallow feature fusion[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(4): 605-612.
[31] TANG S Y, ZHANG S, FANG Y N. HIC-YOLOv5: improved YOLOv5 for small object detection[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2024: 6614-6619.
[32] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[33] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems 36 , 2024. |