[1] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J]. 高电压技术, 2024, 50(3): 1289-1300.
CHEN K, LIU X, JIA L J, et al. Insulator defect detection based on lightweight network and enhanced multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(3): 1289-1300.
[2] 冯晗, 姜勇. 使用改进Yolov5的变电站绝缘子串检测方法[J]. 智能系统学报, 2023, 18(2): 325-332.
FENG H, JIANG Y. A substation insulator string detection method based on an improved Yolov5[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 325-332.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[5] REDMON J, FARHADI A. YOLOv3: an incremental impr-ovement[J]. arXiv:1804.02767, 2018.
[6] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] 周自强, 赵淳, 范鹏. 基于多尺度特征融合Faster R-CNN的绝缘子自爆缺陷研究[J]. 水电能源科学, 2020, 38(11): 187-189.
ZHOU Z Q, ZHAO C, FAN P. Research on insulator self-detonation defects based on multi-scale feature fusion faster R-CNN[J]. Water Resources and Power, 2020, 38(11): 187-189.
[9] 居来提·阿不力孜, 刘玉龙, 曹留, 等. 基于改进Cascade R-CNN的绝缘子故障检测方法研究[J]. 电力科学与技术学报, 2023, 38(3): 140-148.
ABULIZI J, LIU Y L, CAO L, et al. Study of insulator fault detection algorithm based on improved Cascade R-CNN network[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 140-148.
[10] 王建烨, 续欣莹, 谢刚, 等. 改进SSD模型的绝缘子自爆故障检测[J]. 现代电子技术, 2022, 45(14): 115-121.
WANG J Y, XU X Y, XIE G, et al. Insulators self-explosion fault detection based on improved SSD model[J]. Modern Electronics Technique, 2022, 45(14): 115-121.
[11] 高黎明. 基于轻量化目标检测的绝缘子缺陷识别[J]. 高压电器, 2023, 59(12): 237-244.
GAO L M. Insulator defect identification based on lightweight object detection[J]. High Voltage Apparatus, 2023, 59(12): 237-244.
[12] 贾晓芬, 吴雪茹, 赵佰亭. 绝缘子自爆缺陷的轻量化检测网络DE-YOLO[J]. 电子测量与仪器学报, 2023, 37(5): 28-35.
JIA X F, WU X R, ZHAO B T. Lightweight detection network for insulator self-detonation defect DE-YOLO[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5): 28-35.
[13] 翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101.
ZHAI Y J, ZHAO X Y, WANG L Y, et al. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101.
[14] 党宏社, 许勃, 张选德. 融合多尺度特征的轻量级YOLOv7绝缘子缺陷检测算法[J]. 电瓷避雷器, 2023(6): 187-195.
DANG H S, XU B, ZHANG X D. Detection algorithm of lightweight YOLOv7 insulator defect based on multi-scale feature fusion[J]. Insulators and Surge Arresters, 2023(6): 187-195.
[15] 张剑锐, 魏霞, 张林鍹, 等. 改进YOLO v7的绝缘子检测与定位[J]. 计算机工程与应用, 2024, 60(4): 183-191.
ZHANG J R, WEI X, ZHANG L X, et al. Improving detection and positioning of insulators in YOLO v7[J]. Computer Engineering and Applications, 2024, 60(4): 183-191.
[16] 王韵琳, 冯天波, 孙宁, 等. 融合注意力与多尺度特征的电力绝缘子缺陷检测方法[J]. 高电压技术, 2024, 50(5): 1933-1942.
WANG Y L, FENG T B, SUN N, et al. Defect detection method for power insulators based on attention and multi-scale context information[J]. High Voltage Engineering, 2024, 50(5): 1933-1942.
[17] 张小艳, 王苗. 改进的YOLOv8n轻量化景区行人检测方法研究[J]. 计算机工程与应用, 2025, 61(2): 84-96.
ZHANG X Y, WANG M. Research on improved YOLOv8n light-weight pedestrian detection method in scenic spots[J]. Computer Engineering and Applications, 2025, 61(2): 84-96.
[18] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[19] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[20] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
[21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[24] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021.
[25] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[26] ZHANG Q, ZHANG J N, LI Y, et al. IL-YOLO: an efficient detection algorithm for insulator defects in complex backgrounds of transmission lines[J]. IEEE Access, 2024, 12: 14532-14546.
[27] SU J, YUAN Y Q, PRZYSTUPA K, et al. Insulator defect detection algorithm based on improved YOLOv8 for electric power[J]. Signal, Image and Video Processing, 2024, 18(8): 6197-6209.
[28] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |