[1] SHABAN A, BANSAL S, LIU Z, et al. One-shot learning for semantic segmentation[J]. arXiv:1709.03410, 2017.
[2] RAKELLY K , SHELHAMER E, DARRELL T, et al. Conditional networks for few-shot semantic segmentation[C]//Proceedings of the International Conference on Learning Representations, 2018.
[3] OUYANG C, BIFFI C, CHEN C, et al. Self-supervision with superpixels: training few-shot medical image segmentation without annotation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 762-780.
[4] HUANG Y, LIU J M, CHEN H. Self-reinforcing for few-shot medical image segmentation[C]//Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 655-659.
[5] SHEN Q Q, LI Y N, JIN J Y, et al. Q-net: query-informed few-shot medical image segmentation[C]//Proceedings of SAI Intelligent Systems and Applications. Cham: Springer, 2024: 610-628.
[6] ZHU Y Z, WANG S D, XIN T, et al. Few-shot medical image segmentation via a region-enhanced prototypical transformer[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2023: 271-280.
[7] ZHU Y Z, WANG S D, XIN T, et al. Partition-A-medical-image: extracting multiple representative subregions for few-shot medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5016312.
[8] CHRIST P F, ETTLINGER F, GRüN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks[J]. arXiv:1702. 05970, 2017.
[9] HUANG W D, XIAO B, HU J W, et al. Location-aware transformer network for few-shot medical image segmentation[C]//Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2024: 1150-1157.
[10] TIAN Z T, ZHAO H S, SHU M, et al. Prior guided feature enrichment network for few-shot segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1050-1065.
[11] ZHANG B F, XIAO J M, QIN T. Self-guided and cross-guided learning for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8308-8317.
[12] LI G, JAMPANI V, SEVILLA-LARA L, et al. Adaptive prototype learning and allocation for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8330-8339.
[13] LANG C B, CHENG G, TU B F, et al. Learning what not to segment: a new perspective on few-shot segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8047-8057.
[14] ZHANG X L, WEI Y C, YANG Y, et al. SG-one: similarity guidance network for one-shot semantic segmentation[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3855-3865.
[15] WANG K X, LIEW J H, ZOU Y T, et al. PANet: few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9196-9205.
[16] CAO L L, GUO Y B, YUAN Y, et al. Prototype as query for few shot semantic segmentation[J]. arXiv:2211.14764, 2022.
[17] XU Q X, ZHAO W T, LIN G S, et al. Self-calibrated cross attention network for few-shot segmentation[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2024: 655-665.
[18] PENG B H, TIAN Z T, WU X Y, et al. Hierarchical dense correlation distillation for few-shot segmentation[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 23641-23651.
[19] MIN J H, KANG D, CHO M. Hypercorrelation squeeze for few-shot segmenation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 6921-6932.
[20] LIU H F, PENG P, CHEN T, et al. FECANet: boosting few-shot semantic segmentation with feature-enhanced context-aware network[J]. IEEE Transactions on Multimedia, 2023, 25: 8580-8592.
[21] GUHA ROY A, SIDDIQUI S, P?LSTERL S, et al. ‘Squeeze & excite’ guided few-shot segmentation of volumetric images[J]. Medical Image Analysis, 2020, 59: 101587.
[22] FENG R W, ZHENG X S, GAO T X, et al. Interactive few-shot learning: limited supervision, better medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2575-2588.
[23] SUN L Y, LI C X, DING X H, et al. Few-shot medical image segmentation using a global correlation network with discriminative embedding[J]. Computers in Biology and Medicine, 2022, 140: 105067.
[24] HANSEN S, GAUTAM S, JENSSEN R, et al. Anomaly detection-inspired few-shot medical image segmentation through self-supervision with supervoxels[J]. Medical Image Analysis, 2022, 78: 102385.
[25] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[27] ZHANG Q L, YANG Y B. ResT: an efficient transformer for visual recognition[J]. arXiv:2105.13677, 2021.
[28] AURENHAMMER F. Voronoi diagrams: a survey of a fundamental geometric data structure[J]. ACM Computing Surveys, 1991, 23(3): 345-405.
[29] CHENG Z M, WANG S D, XIN T, et al. Few-shot medical image segmentation via generating multiple representative descriptors[J]. IEEE Transactions on Medical Imaging, 2024, 43(6): 2202-2214.
[30] KAVUR A E, GEZER N S, BAR?? M, et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation[J]. Medical Image Analysis, 2021, 69: 101950.
[31] ZHUANG X H. Multivariate mixture model for myocardial segmentation combining multi-source images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 2933-2946.
[32] WU H S, XIAO F Y, LIANG C X. Dual contrastive learning withAnatomical auxiliary supervision for few-shot medical image segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 417-434.
[33] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. |