[1] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755.
[2] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023: 1-20.
[3] WANG J W, YANG W, GUO H W, et al. Tiny object detection in aerial images[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 3791-3798.
[4] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[5] XU C, WANG J W, YANG W, et al. Dot distance for tiny object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 1192-1201.
[6] YANG C, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13658-13667.
[7] YUAN X, CHENG G, YAN K B, et al. Small object detection via coarse-to-fine proposal generation and imitation learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6294-6304.
[8] FU R H, CHEN C C, YAN S, et al. Gaussian similarity-based adaptive dynamic label assignment for tiny object detection[J]. Neurocomputing, 2023, 543: 126285.
[9] HOU H Y, SHEN M Y, HSU C C, et al. Ensemble fusion for small object detection[C]//Proceedings of the 18th International Conference on Machine Vision and Applications. Piscataway: IEEE, 2023: 1-6.
[10] 彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法[J]. 计算机工程与应用, 2024, 60(5):183-190.
PENG Y F, ZHAO T, CHEN Y K, et al. UAV small object detection algorithm based on context information and feature refinement[J]. Computer Engineering and Applications, 2024, 60(5): 183-190.
[11] ZHAO Z C, DU J X, LI C L, et al. Dense tiny object detection: a scene context guided approach and a unified benchmark[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-13.
[12] 陈商盈, 倪受东, 童林. 改进YOLOX的自动驾驶场景目标检测算法[J]. 计算机工程与应用, 2024, 60(12): 225-233.
CHEN S Y, NI S D, TONG L. Improved YOLOX algorithm for object detection in autonomous driving scenarios[J]. Computer Engineering and Applications, 2024, 60(12): 225-233.
[13] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[14] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[15] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[16] GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1159-1167.
[17] HONG M B, LI S W, YANG Y C, et al. SSPNet: scale selection pyramid network for tiny person detection from UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[18] DENG C F, WANG M M, LIU L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2022, 24: 1968-1979.
[19] XIAO J S, GUO H W, ZHOU J, et al. Tiny object detection with context enhancement and feature purification[J]. Expert Systems with Applications, 2023, 211: 118665.
[20] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399.
[21] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[22] CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
[23] TIAN Z, SHEN C, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
[24] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9756-9765.
[25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[26] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[27] ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection[C]//Proceedings of the International Conference on Learning Representations, 2020: 1-16.
[28] SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14449-14458.
[29] XU C, WANG J W, YANG W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 526-543.
[30] GLENN J. YOLOv8: state-of-the-art object detection and segmentation models[EB/OL]. (2023-01-10)[2024-12-11]. https://github.com/ultralytics/ultralytics/releases/tag/v8.1.0.
[31] CHEN P L, WANG J T, ZHANG Z W, et al. DILA: dynamic gaussian distribution fitting and imitation learning-based label assignment for tiny object detection[J]. Applied Soft Computing, 2024, 164: 111980.
[32] DU B W, HUANG Y C, CHEN J X, et al. Adaptive sparse convolutional networks with global context enhancement for faster object detection on drone images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13435-13444. |