计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 224-232.DOI: 10.3778/j.issn.1002-8331.2409-0081

• 图形图像处理 • 上一篇    下一篇

基于步进式自适应特征融合模块的小目标检测网络

陈鹏,林斌,白勇,黄伟伦   

  1. 河北工业大学 人工智能与数据科学学院,天津 300401
  • 出版日期:2025-12-01 发布日期:2025-12-01

Small Object Detection Network Based on Step-by-Step Adaptively Feature Fusion Module

CHEN Peng, LIN Bin, BAI Yong, HUANG Weilun   

  1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 小目标检测在驾驶辅助、智慧医疗、无人机巡检等任务中具有重要的理论和实践意义。多尺度特征学习是设计小目标检测网络经常采用的策略之一。其中,经典的特征金字塔结构通过融合不同层级的特征图,实现多尺度信息的传递,从而在不同分辨率的特征图上都能捕捉到小目标的关键信息。然而,在进行不同尺度特征图融合时,语义信息冲突往往不可避免,进而造成梯度计算不一致,导致小目标信息被淹没。为此,提出了一种步进式自适应特征融合网络模块(step-by-step adaptively feature fusion module,SAFF),将特征融合过程划分为三个阶段依次进行,通过步进式地融合相邻尺度特征图,解决特征图融合过程中的语义信息冲突问题。同时,在每个阶段中,通过自适应计算融合权重,缓解梯度计算不一致问题。在此基础上,将SAFF模块与通用目标检测网络结合,形成用于小目标检测的SAFF-RCNN和Cascade-SAFF-RCNN网络。实验结果表明,所提出的网络模型的小目标检测性能均有显著提升,达到或超越了其他主流的小目标检测模型,证明了SAFF模块用于小目标检测时的有效性。

关键词: 小目标检测, 多尺度特征融合, 自适应融合

Abstract: Small object detection plays a role in tasks such as driving assistance, smart healthcare, and drone inspections. Multi-scale feature learning is a commonly adopted strategy in designing small object detection networks. The classic feature pyramid structure achieves multiscale information transmission by integrating feature maps from different levels, thereby capturing key information about small objects across feature maps of varying resolutions. However, when fusing feature maps at different scales, semantic information conflicts often arise, leading to inconsistent gradient computations and causing the information of small objects to be overwhelmed. Therefore, a step-by-step adaptive feature fusion module (SAFF) is proposed, which divides the feature fusion process into three sequential stages. By progressively fusing adjacent scale feature maps, it resolves the issue of semantic conflict during the fusion process. Additionally, within each stage, adaptive feature fusion can alleviate the problem of inconsistent gradient calculations. The SAFF module is applied to general object detection networks to form the SAFF-RCNN and Cascade-SAFF-RCNN networks dedicated to small object detection. Experimental results show that the proposed networks achieve significant improvements in small object detection performance, reaching or surpassing other mainstream small object detection models, thus demonstrating the effectiveness of the proposed SAFF module in small object detection.

Key words: small object detection, multi-scale feature fusion, adaptive fusion