[1] 王保宪, 白少雄, 赵维刚. 基于特征增强学习的路面裂缝病害视觉检测方法[J]. 铁道科学与工程学报, 2022, 19(7): 1927-1935.
WANG B X, BAI S X, ZHAO W G. Pavement crack damage visual detection method based on feature reinforcement learning[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1927-1935.
[2] 卢印举, 马芳, 戴曙光, 等. 融合多尺度特征的马尔可夫随机场路面裂缝分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 711-721.
LU Y J, MA F, DAI S G, et al. Markov random field road crack image segmentation algorithm integrating multi-scale features[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 711-721.
[3] KOCH C, GEORGIEVA K, KASIREDDY V, et al. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure[J]. Advanced Engineering Informatics, 2015, 29(2): 196-210.
[4] SEKAR A, PERUMAL V. CFC-GAN: forecasting road surface crack using forecasted crack generative adversarial network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21378-21391.
[5] ZHANG Y J, WU J X, LI Q Z, et al. Beyond crack: fine-grained pavement defect segmentation using three-stream neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14820-14832.
[6] YANG L, BAI S L, LIU Y H, et al. Multi-scale triple-attention network for pixelwise crack segmentation[J]. Automation in Construction, 2023, 150: 104853.
[7] CUBERO-FERNANDEZ A, RODRIGUEZ-LOZANO F J, VILLATORO R, et al. Efficient pavement crack detection and classification[J]. EURASIP Journal on Image and Video Processing, 2017(1): 39.
[8] 李国燕, 梁家栋, 刘毅, 等. MFC-DeepLabV3+: 一种多特征级联融合裂缝缺陷检测网络模型[J]. 铁道科学与工程学报, 2023, 20(4): 1370-1381.
LI G Y, LIANG J D, LIU Y, et al. MFC-DeepLabV3+: a multi-feature cascade fusion network model for crack defect detection[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1370-1381.
[9] 翟军治, 孙朝云, 裴莉莉, 等. 多尺度特征增强的路面裂缝检测方法[J]. 交通运输工程学报, 2023, 23(1): 291-308.
ZHAI J Z, SUN Z Y, PEI L L, et al. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308.
[10] 谭兆, 王保宪, 秦守鹏, 等. 基于边缘增强感知的混凝土裂缝病害检测方法[J]. 铁道科学与工程学报, 2023, 20(8): 3172-3180.
TAN Z, WANG B X, QIN S P, et al. Crack damage detection method based on edge feature reinforcement learning[J]. Journal of Railway Science and Engineering, 2023, 20(8): 3172-3180.
[11] LI C, FAN Z, CHEN Y, et al. CrackCLF: automatic pavement crack detection based on closed-loop feedback[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5965-5980.
[12] TSAI Y C, KAUL V, MERSEREAU R M. Critical assessment of pavement distress segmentation methods[J]. Journal of Transportation Engineering, 2010, 136(1): 11-19.
[13] JIANG K, WANG Z Y, YI P, et al. ATMFN: adaptive-threshold-based multi-model fusion network for compressed face hallucination[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2734-2747.
[14] NHAT-DUC H, NGUYEN Q L, TRAN V D. Automatic recog-nition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network[J]. Automation in Construction, 2018, 94: 203-213.
[15] YU H T, HO S L, HU M Q, et al. Edge-based FEM-BEM for wide-band electromagnetic computation[J]. IEEE Transactions on Magnetics, 2006, 42(4): 771-774.
[16] LI H F, SONG D Z, LIU Y, et al. Automatic pavement crack detection by multi-scale image fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2025-2036.
[17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[18] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[19] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[20] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.
[21] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[22] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv: 1804.03999, 2018.
[23] LIU Y H, YAO J, LU X H, et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153.
[24] QU Z, CAO C, LIU L, et al. A deeply supervised convolutional neural network for pavement crack detection with multiscale feature fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4890-4899.
[25] YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
[26] XIE S N, TU Z W. Holistically-nested edge detection[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1395-1403.
[27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[28] WANG W J, SU C. Automatic concrete crack segmentation model based on transformer[J]. Automation in Construction, 2022, 139: 104275.
[29] XIAO S Z, SHANG K K, LIN K, et al. Pavement crack dete-ction with hybrid-window attentive vision transformers[J]. International Journal of Applied Earth Observation and Geo-information, 2023, 116: 103172.
[30] LIU H J, MIAO X Y, MERTZ C, et al. CrackFormer: trans-former network for fine-grained crack detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 3763-3772.
[31] LIU H J, YANG J, MIAO X Y, et al. CrackFormer network for pavement crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9240-9252.
[32] CHEN J Z, ZHAO N, ZHANG R H, et al. Refined crack dete-ction via LECSFormer for autonomous road inspection vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2049-2061.
[33] XU Z S, GUAN H Y, KANG J, et al. Pavement crack detection from CCD images with a locally enhanced transformer network[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102825.
[34] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460.
[35] YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 636-644.
[36] LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6153-6162.
[37] KE W, CHEN J, JIAO J B, et al. SRN: side-output residual network for object symmetry detection in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 302-310.
[38] ZOU Q, ZHANG Z, LI Q Q, et al. DeepCrack: learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1498-1512.
[39] HE J Z, ZHANG S L, YANG M, et al. Bi-directional cascade network for perceptual edge detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3823-3832.
[40] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 205-218.
[41] LI H B, ZHANG H W, ZHU H, et al. Automatic crack dete-ction on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer[J]. Engineering Structures, 2024, 307: 117903. |