[1] 任鸿杰, 刘萍, 岱超, 等. 改进DeepLabV3+网络的遥感影像农作物分割方法[J]. 计算机工程与应用, 2022, 58(11): 215-223.
REN H J, LIU P, DAI C, et al. Crop segmentation method of remote sensing image based on improved DeepLab V3+network[J]. Computer Engineering and Applications, 2022, 58(11): 215-223.
[2] ZHANG J, CAMPBELL J F, SWEENEY D C. A continuous approximation approach to integrated truck and drone delivery systems[J]. Omega, 2024, 126: 103067.
[3] ESTEVEZ J, NU?EZ E, LOPEZ-GUEDE J M, et al. A low-cost vision system for online reciprocal collision avoidance with UAVs[J]. Aerospace Science and Technology, 2024, 150: 109190.
[4] SAADAOUI F Z, CHEGGAGA N, EL HOUDA DJABRI N. Multi-sensory system for UAVs detection using Bayesian inference[J]. Applied Intelligence, 2023, 53(24): 29818-29844.
[5] NWAOGU J M, YANG Y, CHAN A P C, et al. Application of drones in the architecture, engineering, and construction (AEC) industry[J]. Automation in Construction, 2023, 150: 104827.
[6] MENG Z Y, ZHOU Y T, LI E Y, et al. Environmental and economic impacts of drone-assisted truck delivery under the carbon market price[J]. Journal of Cleaner Production, 2023, 401: 136758.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[10] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[13] 李彬, 李生林. 改进YOLOv11n的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 96-104.
LI B, LI S L. Improved YOLOv11n small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2025, 61(7): 96-104.
[14] GAO Y L, XIN Y B, YANG H, et al. A lightweight anti-unmanned aerial vehicle detection method based on improved YOLOv11[J]. Drones, 2025, 9(1): 11.
[15] 张帅, 王波涛, 涂嘉怡, 等. SCE-YOLO: 改进YOLOv8的轻量级无人机视觉检测算法[J]. 计算机工程与应用, 2025, 61(13): 100-112.
ZHANG S, WANG B T, TU J Y, et al. SCE-YOLO: improved lightweight YOLOv8 algorithm for UAV vision detection[J]. Computer Engineering and Applications, 2025, 61(13): 100-112.
[16] XUAN Y, ZHANG X Y, LI C, et al. LAM-YOLOv11 for UAV transmission line inspection: overcoming environmental challenges with enhanced detection efficiency[J]. Multimedia Systems, 2025, 31(2): 110.
[17] WANG Z, SU Y T, KANG F, et al. PC-YOLO11s: a lightweight and effective feature extraction method for small target image detection[J]. Sensors, 2025, 25(2): 348.
[18] 侯颖, 吴琰, 寇旭瑞, 等. 改进YOLOv8的无人机航拍图像小目标检测算法[J]. 计算机工程与应用, 2025, 61(11): 83-92.
HOU Y, WU Y, KOU X R, et al. Small object detection algorithm for UAV images based on improved YOLOv8[J]. Computer Engineering and Applications, 2025, 61(11): 83-92.
[19] 董一兵, 曾辉, 侯少杰. LMUAV-YOLOv8: 低空无人机视觉目标检测轻量化网络[J]. 计算机工程与应用, 2025, 61(3): 94-110.
DONG Y B, ZENG H, HOU S J. LMUAV-YOLOv8: lightweight network for object detection in low-altitude UAV vision[J]. Computer Engineering and Applications, 2025, 61(3): 94-110.
[20] ZHOU S C, YANG L, LIU H T, et al. A lightweight drone detection method integrated into a linear attention mechanism based on improved YOLOv11[J]. Remote Sensing, 2025, 17(4): 705.
[21] 李学威, 毛小坤, 孙滨, 等. 基于YOLOv11n的无人机航拍小目标检测算法[J/OL]. 光通信研究, 2025: 1-8. (2025-
02-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GTXY20250208003&dbname=CJFD&dbcode=CJFQ.
LI X W, MAO X K, SUN B, et al. UAV aerial small object detection algorithm based on YOLOv11n[J/OL]. Study on Optical Communications, 2025: 1-8. (2025-02-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GTXY202502-08003&dbname=CJFD&dbcode=CJFQ.
[22] 施宇, 王乐, 姚叶鹏, 等. 基于强化特征金字塔和聚焦损失的小目标检测[J]. 计算机科学与探索, 2025, 19(3): 693-702.
SHI Y, WANG L, YAO Y P, et al. Small object detection based on enhanced feature pyramid and focal-AIoU loss[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 693-702.
[23] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148.
YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148.
[24] 朱玉敏, 孙光灵, 缪飞. 基于改进YOLOv8算法的鱼眼图像下行人检测[J]. 计算机科学与探索, 2025, 19(2): 443-453.
ZHU Y M, SUN G L, MIAO F. Pedestrian detection in fisheye images based on improved YOLOv8 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 443-453.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[26] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[27] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7369-7378.
[28] ZHONG J C, CHEN J Y, MIAN A. DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9528-9535. |