[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[5] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[6] DONG C, LUO X S. Research on a pedestrian detection algorithm based on improved SSD network[J]. Journal of Physics: Conference Series, 2021, 1802(3): 032073.
[7] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[9] 聂源, 赖惠成, 高古学. 改进YOLOv7+Bytetrack的小目标检测与追踪[J]. 计算机工程与应用, 2024, 60(12): 189-202.
NIE Y, LAI H C, GAO G X. Improved small target detection and tracking with YOLOv7+Bytetrack[J]. Computer Engineering and Applications, 2024, 60(12): 189-202.
[10] LI C, WANG Y D, LIU X M. An improved YOLOv7 lightweight detection algorithm for obscured pedestrians[J]. Sensors, 2023, 23(13): 5912.
[11] 汤静雯, 赖惠成, 王同官. 远距离情形下的改进YOLOv8行人检测算法[J]. 计算机工程, 2025, 51(4): 303-313.
TANG J W, LAI H C, WANG T G. Improved YOLOv8 pedestrian detection algorithm for long-distance situations[J]. Computer Engineering, 2025, 51(4): 303-313.
[12] TANG J W, LAI H C, GAO G X, et al. PFEL-Net: a lightweight network to enhance feature for multi-scale pedestrian detection[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(8): 102198.
[13] 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214.
LI L, JIN Z X, YU X L, et al. Road vehicle and pedestrian detection based on YOLOv9 for haar wavelet downsampling[J]. Computer Engineering and Applications, 2024, 60(20): 207-214.
[14] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[15] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[16] 胡晓伟, 闫奕昕, 王大为, 等. 基于YOLOM算法的路面病害轻量化检测方法[J]. 中国公路学报, 2024, 37(12): 381-391.
HU X W, YAN Y X, WANG D W, et al. Lightweight pavement disease detection based on YOLOM algorithm[J]. China Journal of Highway and Transport, 2024, 37(12): 381-391.
[17] 张浩晨, 张竹林, 史瑞岩, 等. YOLO-CDC: 优化改进YOLOv8的车辆目标检测算法[J]. 计算机工程与应用, 2025, 61(13): 124-137.
ZHANG H C, ZHANG Z L, SHI R Y, et al. YOLO-CDC: improved YOLOv8 vehicle object detection algorithm[J]. Computer Engineering and Applications, 2025, 61(13): 124-137.
[18] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[19] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[20] FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3490-3499.
[21] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024.
[22] ZHANG S S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4457-4465.
[23] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[24] SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: a benchmark for detecting human in a crowd[J]. arXiv:1805.00123, 2018.
[25] ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 227-235.
[26] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[27] WU G N, WU Q H. Enhancing steel surface defect detection: a hyper-YOLO approach with ghost modules and hyper FPN[J]. IAENG International Journal of Computer Science, 2024, 51(9): 1321-1330.
[28] WEI J, CHE K, GONG J Y, et al. Fast and accurate detection of dim and small targets for smart micro-light sight[J]. Electronics, 2024, 13(16): 3301.
[29] ZHANG F F, LEONG L V, YEN K S, et al. An enhanced lightweight model for small-scale pedestrian detection based on YOLOv8s[J]. Digital Signal Processing, 2025, 156: 104866.
[30] 江旺玉, 王乐, 姚叶鹏, 等. 多尺度特征聚合扩散和边缘信息增强的小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 105-116.
JIANG W Y, WANG L, YAO Y P, et al. Multi-scale feature aggregation diffusion and edge information enhancement small object detection algorithm[J]. Computer Engineering and Applications, 2025, 61(7): 105-116.
[31] 黄俊杰, 胡畅, 包嘉琪, 等. 轻量型密集行人检测算法研究[J]. 计算机仿真, 2024, 41(5): 183-188.
HUANG J J, HU C, BAO J Q, et al. Research on lightweight dense pedestrian detection algorithm[J]. Computer Simulation, 2024, 41(5): 183-188.
[32] 王泽宇, 徐慧英, 朱信忠, 等. 基于YOLOv8改进的密集行人检测算法: MER-YOLO[J]. 计算机工程与科学, 2024, 46(6): 1050-1062.
WANG Z Y, XU H Y, ZHU X Z, et al. An improved dense pedestrian detection algorithm based on YOLOv8: MER-YOLO[J]. Computer Engineering & Science, 2024, 46(6): 1050-1062.
[33] 蒋源, 朱高峰, 朱凤华, 等. 基于复合缩放的动态航拍小目标检测算法[J]. 航空兵器, 2025, 32(2): 104-112.
JIANG Y, ZHU G F, ZHU F H, et al. Dynamic aerial small target detection algorithm based on compound zoom scaling[J]. Aero Weaponry, 2025, 32(2): 104-112.
[34] 董一兵, 曾辉, 侯少杰. LMUAV-YOLOv8: 低空无人机视觉目标检测轻量化网络[J]. 计算机工程与应用, 2025, 61(3): 94-110.
DONG Y B, ZENG H, HOU S J. LMUAV-YOLOv8: lightweight network for object detection in low-altitude UAV vision[J]. Computer Engineering and Applications, 2025, 61(3): 94-110. |