计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 111-123.DOI: 10.3778/j.issn.1002-8331.2503-0097

• 目标检测专题 • 上一篇    下一篇

LMFI-YOLO:复杂场景下的轻量化行人检测算法

袁婷婷,赖惠成,汤静雯,张晞,高古学   

  1. 1.新疆大学 计算机科学与技术学院,乌鲁木齐 830046
    2.淮阴工学院 计算机与软件工程学院,江苏 淮安 223001
  • 出版日期:2025-08-01 发布日期:2025-07-31

LMFI-YOLO: Lightweight Pedestrian Detection Algorithm in Complex Scenes

YUAN Tingting, LAI Huicheng, TANG Jingwen, ZHANG Xi, GAO Guxue   

  1. 1.College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China
    2.College of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu 223001, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 针对当前行人检测算法在复杂场景下存在误检、漏检及模型复杂度高等问题,提出一种改进YOLO11的轻量化行人检测算法——LMFI-YOLO融合RepConv来改进C3k2模块,构建RS-C3k2结构,以增强网络对行人特征的学习与捕捉能力。设计全新的颈部结构MBFPN,结合高效上采样模块与多尺度卷积模块,以强化特征融合并提升行人的特征表达能力,大幅提高检测精度。设计任务交互检测头TD-Detect,通过共享卷积与任务交互机制显著减少参数量和模型大小。为进一步提高检测精度,采用Focaler-GIoU作为边界框回归损失函数,通过聚焦不同回归样本来提升目标定位与整体性能。实验结果表明,所提算法在CityPersons数据集上mAP50提升8.5个百分点,模型参数量降至1.8×106,模型大小压缩至4.1 MB;在TinyPerson与CrowdHuman数据集上的泛化性实验表明,该算法在小尺寸目标和遮挡场景下的mAP50分别提升6.0和4.0个百分点。综合来看,LMFI-YOLO在保证检测精度显著提升的同时大幅降低了模型复杂度。

关键词: 行人检测, 小目标行人, 遮挡行人, 深度卷积, 任务交互

Abstract: Aiming at the problems of false detection, missing detection and high model complexity in the current pedestrian detection algorithm in complex scenes, an improved YOLO11 lightweight pedestrian detection algorithm LMFI-YOLO is proposed. RepConv is integrated to improve the C3k2 module, and RS-C3k2 structure is constructed to enhance the learning and capturing ability of pedestrian features. A new neck structure MBFPN is designed, which combines efficient upsampling module and multi-scale convolution module to strengthen feature fusion and enhance the feature expression ability of pedestrians, and greatly improve the detection accuracy. TD-Detect, a task interaction detection header, is designed to significantly reduce the number of parameters and model size by sharing the convolution and task interaction mechanism. In order to further improve the detection accuracy, Focaler-GIoU is used as the bounding box regression loss function to improve the target positioning and overall performance by focusing different regression samples. The experimental results show that the proposed algorithm increases mAP50 by 8.5 percentage points on the CityPersons dataset, reduces the number of model parameters to 1.8×106, and compacts the model size to 4.1 MB. Generalization experiments on TinyPerson and CrowdHuman datasets show that the mAP50 of the proposed algorithm can be improved by 6.0 and 4.0 percentage points in small-size targets and occlusion scenes, respectively. In summary, LMFI-YOLO significantly reduces the complexity of the model while significantly improving the detection accuracy.

Key words: pedestrian detection, small target pedestrian, occluded pedestrians, depth-wise convolution, task interaction