[1] 张英俊, 白小辉, 谢斌红. CNN-Transformer特征融合多目标跟踪算法[J]. 计算机工程与应用, 2024, 60(2): 180-190.
ZHANG Y J, BAI X H, XIE B H. Multi-object tracking algorithm based on CNN-Transformer feature fusion[J]. Computer Engineering and Applications, 2024, 60(2): 180-190.
[2] 潘泽志.不同光线环境下的车辆检测及灯语信息识别研究[D]. 深圳: 深圳大学, 2022.
PAN Z Z. Vehicle detection and lamp signal recognition in different light environments[D]. Shenzhen: Shenzhen University, 2022.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[9] 韩文静, 何宁, 刘圣杰, 等. 基于改进ResNet-CrowdDet的密集行人检测算法[J]. 计算机工程与应用, 2023, 59(16): 196-204.
HAN W J, HE N, LIU S J, et al. Dense pedestrian detection algorithm based on improved ResNet-CrowdDet[J]. Computer Engineering and Applications, 2023, 59(16): 196-204.
[10] 贺宇哲, 徐光美, 何宁, 等. 迭代Faster R-CNN的密集行人检测[J]. 计算机工程与应用, 2023, 59(21): 214-221.
HE Y Z, XU G M, HE N, et al. Dense pedestrian detection with iterative faster R-CNN[J]. Computer Engineering and Applications, 2023, 59(21): 214-221.
[11] 高强, 唐福兴, 李栋, 等. 基于改进YOLOv5的密集场景行人检测方法研究[J]. 国外电子测量技术, 2023, 42(4): 125-130.
GAO Q, TANG F X, LI D, et al. Research on pedestrian detection method in dense scene based on improved YOLOv5[J]. Foreign Electronic Measurement Technology, 2023, 42(4): 125-130.
[12] 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300.
YU F, ZHANG J. Dense pedestrian detection based on shifted window attention multi-scale equalization[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300.
[13] 高昂, 梁兴柱, 夏晨星, 等. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898.
GAO A, LIANG X Z, XIA C X, et al. A dense pedestrian detection algorithm with improved YOLOv8[J]. Journal of Graphics, 2023, 44(5): 890-898.
[14] 胡倩,皮建勇,胡伟超,等.基于改进YOLOv5的密集行人检测算法[J].计算机工程, 2025, 51(3): 216-228.
HU Q, PI J Y, HU W C, et al. Research on dense pedestrian detection algorithm based on improved YOLOv5[J]. Computer Engineering, 2025, 51(3): 216-228.
[15] LI N F, BAI X L, SHEN X F, et al. Dense pedestrian detection based on GR-YOLO[J]. Sensors, 2024, 24(14): 4747.
[16] 徐振峰, 许云峰, 于子洲, 等. 针对密集行人检测任务中多尺度目标的检测算法[J/OL]. 计算机工程与应用, 2024: 1-15 (2024-09-12)[2024-09-20]. https://kns.cnki.net/kcms/detail/11.2127.TP.20240912.1036.014.html.
XU Z F, XU Y F, YU Z Z, et al. Multi-scale target detection algorithm for dense pedestrian detection task[J/OL]. Computer Engineering and Applications, 2024: 1-15 (2024-09-12) [2024-09-20]. https://kns.cnki.net/kcms/detail/11.2127.TP.20240912.1036.014.html.
[17] ZHONG J C, CHEN J Y, MIAN A. DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9528-9535.
[18] YANG L. ZHANG R Y LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021:11863-11874.
[19] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
[20] WANG A, CHEN H, LIN Z J, et al. Rep ViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15909-15920.
[21] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[22] ZHANG X D, ZENG H, GUO S, et al. Efficient long-range attention network forImage super-resolution[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 649-667.
[23] 肖振久, 孔祥旭, 宗佳旭, 等. 自适应聚焦损失的图像目标检测算法[J]. 计算机工程与应用, 2021, 57(23): 185-192.
XIAO Z J, KONG X X, ZONG J X, et al. Image object detection algorithm based on adaptive focal loss[J]. Computer Engineering and Applications, 2021, 57(23): 185-192.
[24] ZHANG H, ZHANG S. Shpae-IoU: more accurate metric considering bounding box shape and scale [J]. arXiv:2321.17663, 2017.
[25] ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380-393.
[26] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[27] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[28] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[29] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattem Recognition. Berlin, Heidelberg: Springer, 2018: 1-6.
[30] 喻伟,周劲,黄金良.基于改进YOLOv5稻米垩白检测的研究[J].中国粮油学报, 2025, 40(2): 41-48.
YU W, ZHOU J, HUANG J L. Research on rice chalkiness detection based on improved YOLOv5[J]. Journal of the Chinese Cereals and Oils, 2025, 40(2): 41-48.
[31] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[32] WANG A, CHEN H, LIU L, et al YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14258, 2024.
[33] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[34] 王泽宇, 徐慧英, 朱信忠, 等. 基于YOLOv8改进的密集行人检测算法: MER-YOLO[J]. 计算机工程与科学, 2024, 46(6): 1050-1062.
WANG Z Y, XU H Y, ZHU X Z, et al. An improved dense pedestrian detection algorithm based on YOLOv8: MER-YOLO[J]. Computer Engineering & Science, 2024, 46(6): 1050-1062.
[35] LIU Q L, YE H X, WANG S M, et al. YOLOv8-CB: dense pedestrian detection algorithm based on in-vehicle camera[J]. Electronics, 2024, 13(1): 236.
[36] XU Y X, WEN M, HE W, et al. An improved multi-scale and knowledge distillation method for efficient pedestrian detection in dense scenes[J]. Journal of Real-Time Image Processing, 2024, 21(4): 126. |