[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[J]. arXiv:1311.2524, 2013.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, 2015.
[4] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shotmultiBox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] 徐增敏, 陆光建, 陈俊彦, 等. 基于通道特征聚合的行人重识别算法[J]. 应用科学学报, 2023, 41(1): 107-120.
XU Z M, LU G J, CHEN J Y, et al. Person re-identification algorithm based on channel feature aggregation[J]. Journal of Applied Sciences, 2023, 41(1): 107-120.
[10] 夏正新, 苏翀. 一种多参数学习的门控激活函数[J]. 南京邮电大学学报 (自然科学版), 2022, 42(5): 83-90.
XIA Z X, SU C. A multi-parameterized gated activation function[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2022, 42(5): 83-90.
[11] 徐静萍, 王芳. 基于改进的S-ReLU激活函数的图像分类方法[J]. 科学技术与工程, 2022, 22(29): 12963-12968.
XU J P, WANG F. Image classification method based on improved S-ReLU activation function[J]. Science Technology and Engineering, 2022, 22(29): 12963-12968.
[12] 杜圣杰, 贾晓芬, 黄友锐, 等. 面向CNN模型图像分类任务的高效激活函数设计[J]. 红外与激光工程, 2022, 51(3): 493-501.
DU S J, JIA X F, HUANG Y R, et al. High efficient activation function design for CNN model image classification task[J]. Infrared and Laser Engineering, 2022, 51(3): 493-501.
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[14] WANG X, ZHANG S, YU Z, et al. Scale-equalizing pyramid convolution for object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, June 13-19, 2020. Piscataway: IEEE, 2020: 13359-13368.
[15] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, June 15-20, 2019. Piscataway: IEEE, 2019: 5693-5703.
[16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[17] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[18] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[19] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[20] QI C, GAO J, PEARSON S, et al. Tea chrysanthemum detection under unstructured environments using the TC-YOLO model[J]. Expert Systems with Applications, 2022, 193: 116473.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722. |