[1] 邓清男, 石晓龙.变电站室内数显仪表的读数识别[J].工业仪表与自动化装置, 2018(2): 86-89.
DENG Q N, SHI X L. Reading identification of indoor digital instrumentation in substation[J].Industrial Instrumentation and Automation, 2018(2): 86-89.
[2] 朱立倩.基于深度学习的数显仪表字符识别[J].计算机技术与发展, 2020, 30(6): 141-144.
ZHU L Q. Character recognition of digital display instrument based on deep learning[J].Computer Technology and Development, 2020, 30(6): 141-144.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] 翁念标.面向工业环境的数显仪表识别技术研究[D].杭州: 杭州电子科技大学, 2022.
WENG N B. Research on digital display instrument identification in industrial environment[D].Hangzhou: Hangzhou Dianzi University, 2022.
[5] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696, 2022.
[6] 齐向明, 董旭.改进Yolov7-tiny的钢材表面缺陷检测算法[J].计算机工程与应用, 2023, 59(12): 176-183.
QI X M, DONG X. Improved Yolov7-tiny algorithm for steel surface defectdetection[J]. Computer Engineering and Applications, 2023, 59(12): 176-183.
[7] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, 2021: 2778-2788.
[8] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[9] LU X, SONG W. Improved YOLOv5s model for vehicle detection and recognition[C]//Proceedings of the Intelligent Computing Methodologies, 2022: 423-434.
[10] SIFRE L, MALLAT S. Rigid-motion scattering for texture classification[J]. arXiv:1403.1687, 2014.
[11] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[12] 王艺霏, 贺利乐, 何林.基于YOLOv4的轻量化口罩佩戴检测模型设计[J].西北大学学报(自然科学版), 2023, 53(2): 265-273.
WANG Y F, HE L L, HE L. Design of lightweight mask wearing detection model based on YOLOv4[J]. Journal of Northwest University (Natural Science Edition), 2023, 53(2): 265-273.
[13] 耿跃, 任军号, 吉沛琦.基于K-Means变异算子的混合遗传算法聚类研究[J].计算机工程与应用, 2011, 47(29): 151-153.
GENG Y, REN J H, JI P Q. Hybrid genetic algorithm clustering analysis based on K-Means mutation operator[J]. Computer Engineering and Applications, 2011, 47(29): 151-153.
[14] 吴志高, 陈明.基于改进YOLO v7的微藻轻量级检测方法[J].大连海洋大学学报, 2023, 38(1): 129-139.
WU Z G, CHEN M. Lightweight detection method for microalgae based on improved YOLO v7[J]. Journal of Dalian Ocean University, 2023, 38(1): 129-139.
[15] LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[16] 黄文斌, 陈仁文, 袁婷婷.改进YOLOv3-SPP的无人机目标检测模型压缩方案[J].计算机工程与应用, 2021, 57(21): 165-173.
HUANG W B, CHEN R W, YUAN T T. Compression of UAV object detection model based on improved YOLOv3-SPP[J]. Computer Engineering and Applications, 2021, 57(21): 165-173.
[17] 杨国威, 许志旺, 房臣,等.融合剪枝与量化的目标检测网络压缩方法[J].计算机工程与应用, 2022, 58(22): 108-115.
YANG G W, XU Z W, FANG C, et al. Object detection network compression method based on pruning and quantization[J].Computer Engineering and Applications, 2022, 58(22): 108-115.
[18] 陈科峻, 张叶.基于YOLO-v3模型压缩的卫星图像船只实时检测[J].液晶与显示, 2020, 35(11): 1168-1176.
CHEN K J, ZHANG Y. Real-time ship detection in satellite images based on YOLO-v3 model compression[J]. Liquid Crystals and Displays, 2020, 35(11): 1168-1176.
[19] ZHAO H L, SHI K J, JIN X G, et al. Probability-based channel pruning for depthwise separable convolutional networks[J]. Journal of Computer Science and Technology, 2022, 37(3): 584-600. |