计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (14): 209-216.DOI: 10.3778/j.issn.1002-8331.2203-0507

• 图形图像处理 • 上一篇    下一篇

改进YOLOv4-Tiny的SAR图像目标快速检测方法

张廓,陈章进,张岩   

  1. 上海大学 微电子研究与开发中心,上海 200444
  • 出版日期:2023-07-15 发布日期:2023-07-15

Improved YOLOv4-Tiny Fast Target Detection Method for SAR Image

ZHANG Kuo, CHEN Zhangjin, ZHANG Yan   

  1. Microelectronics Research and Development Center, Shanghai University, Shanghai 200444, China
  • Online:2023-07-15 Published:2023-07-15

摘要: 如今面向合成孔径雷达(synthetic aperture radar,SAR)图像的目标检测技术已得到广泛的研究与应用,并通过深度学习的方法可有效应用于复杂背景特征下的舰船检测,检测精度和速度也具有一定的效果。为提高在SAR舰船目标场景中的检测速度和精度,提出了一种可用于SAR舰船图像的单类目标快速检测方法,主要通过应用深度可分离卷积修改YOLOv4-Tiny网络,并在此基础上添加经改进的通道和空间注意力机制来提升精度。以输入图像尺寸为608×608为基准,相比于YOLOv4-Tiny模型,实验结果表明,该方法的检测精度可达93.91%,检测速度可达42.8 frame/s,提高了11.7 frame/s,模型权重仅有2.17 MB大小,约为YOLOv4-Tiny的1/10。模型利于硬件上板部署,满足SAR图像舰船目标的快速检测场景需求。

关键词: 合成孔径雷达, YOLOv4-Tiny, 舰船检测, 深度可分离卷积, 注意力机制

Abstract: Nowadays, the target detection technology for synthetic aperture radar(SAR) images has been widely researched and applied, and the deep learning method can be effectively applied to ship detection under complex background features, and the detection accuracy and speed are also has certain improvement. In order to further improve the detection speed and accuracy in the SAR ship target scene, a fast detection method for a single type of target in SAR ship images is proposed. The YOLOv4-Tiny network is modified by applying depthwise separable convolution, and on top of this, improved channel and spatial attention mechanisms are added to improve accuracy. Taking the input image size of 608×608 as the benchmark, compared with the YOLOv4-Tiny model, the experimental results show that the detection accuracy of the method in this paper can reach 93.91%, the detection speed can reach 42.8 frame/s, and the model is improved by 11.7 frame/s. The weight is only 2.17 MB in size, which is about 1/10 of that of YOLOv4-Tiny. The model is conducive to the deployment of hardware on the board, and meets the needs of fast detection scenarios for ship targets in SAR images.

Key words: synthetic aperture radar, YOLOv4-Tiny, ship detection, depth separable convolution, attention mechanism