[1] 孙显, 孟瑜, 刁文辉, 等. 智能遥感: AI赋能遥感技术[J]. 中国图象图形学报, 2022, 27(6): 1799-1822.
SUN X, MENG Y, DIAO W H, et al. The review of AI-based intelligent remote sensing capabilities[J]. Journal of Image and Graphics, 2022, 27(6): 1799-1822.
[2] NATIVI S, MAZZETTI P, SANTORO M, et al. Big data challenges in building the global earth observation system of systems[J]. Environmental Modelling & Software, 2015, 68: 1-26.
[3] JU Y, ZHANG Y, CHEN D. A SAR image segmentation method based on MLRT[C]//2020 5th International Conference on Communication, Image, and Signal Processing (CCISP), 2020: 179-182.
[4] MANJU S, HELENPRABHA K. A structured support vector machine for hyperspectral satellite image segmentation and classification based on modified swarm optimization approach[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 3659-3668.
[5] HAMADA M A, KANAT Y, ABICHE E. Multi-spectral image segmentation based on the K-means clustering[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 9(2): 2278-3075.
[6] 厍向阳, 马亦骏. 改进的遥感图像语义分割算法[J]. 计算机工程与科学, 2023, 45(3): 504-511.
SHE X Y, MA Y J. An improved semantic segmentation algorithm for remote sensing images[J]. Computer Engineering & Science, 2023, 45(3): 504-511.
[7] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[9] RONNERBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[11] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[12] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[14] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[15] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[16] XU Z, ZHANG W, ZHANG T, et al. HRCNet: high-resolution context extraction network for semantic segmentation of remote sensing images[J]. Remote Sensing, 2020, 13(1): 71.
[17] LI R, ZHENG S, ZHANG C, et al. Multiattention network for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13.
[18] 孙汉淇, 潘晨, 何灵敏, 等. 多模态特征融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2022, 58(24): 256-264.
SUN H Q, PAN C, HE L M, et al. Remote sensing image semantic segmentation network based on multimodal feature fusion[J]. Computer Engineering and Applications, 2022, 58(24): 256-264.
[19] BITTNER K, ADAM F, CUI S, et al. Building footprint extraction from VHR remote sensing images combined with normalized DSMs using fused fully convolutional networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2615-2629.
[20] PARK S J, HONG K S, LEE S. RdfNet: RGB-D multi-level residual feature fusion for indoor semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4980-4989.
[21] JIANG J, ZHENG L, LUO F, et al. RedNet: residual encoder-decoder network for indoor RGB-D semantic segmentation[J]. arXiv:1806.01054, 2018.
[22] CHITTA K, ALVAREZ J M, HEBERT M. Quadtree generating networks: efficient hierarchical scene parsing with sparse convolutions[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 2020-2029.
[23] ZHOU W, YUAN J, LEI J, et al. TSNet: three-stream self-attention network for RGB-D indoor semantic segmentation[J]. IEEE Intelligent Systems, 2020, 36(4): 73-78.
[24] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548.
MA Y, GULIMILA K. Research review of lmage semantic segmentation method in high-resolution remote sensing lmage interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548.
[26] 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU G, FENG C, MA F. Review of medical lmage segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[27] GERKE M. Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen)[R/OL]. ResearcheGate, 2014. https://doi.org/10.13140/2.1.5015.9683.
[28] YUE K, YANG L, LI R, et al. TreeUNet: adaptive tree convolutional neural networks for subdecimeter aerial image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156: 1-13.
[29] ELHASSAN M A, YANG C, HUANG C, et al. SPFNet: subspace pyramid fusion network for semantic segmentation[J]. arXiv:2204.01278, 2022. |