[1] 康昊, 沈学东, 王军. 从永恒之蓝勒索病毒事件浅谈企业网络安全[J]. 网络安全技术与应用, 2020(10): 141-142.
KANG H, SHEN X D, WANG J. A brief discussion on enterprise network security from the Eternal Blue ransomware incident [J]. Network Security Technology and Application, 2020(10): 141-142.
[2] LIU W, ZHONG S. Web malware spread modelling and optimal control strategies[J]. Scientific Reports, 2017, 7: 42308.
[3] OZ H, ARIS A, LEVI A, et al. A survey on ransomware: evolution, taxonomy, and defense solutions[J]. ACM Computing Surveys, 2022, 54(11): 1-37.
[4] SHALAGINOV A, BANIN S, DEHGHANTANHA A, et al. Machine learning aided static malware analysis: a survey and tutorial[J]. arXiv:1808.01201, 2018.
[5] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7.
[6] RAFF E, BARKER J, SYLVESTER J, et al. Malware detection by eating a whole EXE[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018: 268-276.
[7] 汪嘉来, 张超, 戚旭衍, 等. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994.
WANG J L, ZHANG C, QI X Y, et al. A survey of intelligent malware detection on Windows platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994.
[8] SENEVIRATNE S, SHARIFFDEEN R, RASNAYAKA S, et al. Self-supervised vision transformers for malware detection[J]. IEEE Access, 2022, 10: 103121-103135.
[9] VASAN D, ALAZAB M, WASSAN S, et al. Image-based malware classification using ensemble of CNN architectures (IMCEC)[J]. Computers & Security, 2020, 92: 101748.
[10] KUMAR S, JANET B. DTMIC: deep transfer learning for malware image classification[J]. Journal of Information Security and Applications, 2022, 64: 103063.
[11] JIAN Y F, KUANG H B, REN C L, et al. A novel framework for image-based malware detection with a deep neural network[J]. Computers & Security, 2021, 109: 102400.
[12] RAFF E, FLESHMAN W, ZAK R, et al. Classifying sequences of extreme length with constant memory applied to malware detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 9386-9394.
[13] REZAEI T, MANAVI F, HAMZEH A. A PE header-based met-hod for malware detection using clustering and deep embedding techniques[J]. Journal of Information Security and Applications, 2021, 60: 102876.
[14] HOU Z H, LI X Y, LI L H, et al. An end-to-end raw bytes based malware classifier via self-attention residual convolutional network[C]//Proceedings of the IEEE 8th International Conference on Computer and Communications. Piscataway: IEEE, 2022: 1666-1670.
[15] RUSTAM F, ASHRAF I, JURCUT A D, et al. Malware dete-ction using image representation of malware data and transfer learning[J]. Journal of Parallel and Distributed Computing, 2023, 172: 32-50.
[16] CHAGANTI R, RAVI V, PHAM T D. A multi-view feature fusion approach for effective malware classification using deep learning[J]. Journal of Information Security and Applic-ations, 2023, 72: 103402.
[17] GIBERT D, MATEU C, PLANES J. HYDRA: a multimodal deep learning framework for malware classification[J]. Computers & Security, 2020, 95: 101873.
[18] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the International Conference on Machine Learning, 2017: 933-941.
[19] BAHDANAU D, CHO K, BENGIO Y. Neural machine transl-ation by jointly learning to align and translate[C]//Proceedings of the International Conference on Learning Representations, 2014: 4453-4462.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
[21] JEON J, JEONG B, BAEK S, et al. Hybrid malware detection based on Bi-LSTM and SPP-Net for smart IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4830-4837.
[22] JHA S, PRASHAR D, LONG H V, et al. Recurrent neural network for detecting malware[J]. Computers & Security, 2020, 99: 102037.
[23] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2247-2256.
[24] WANG W Y, TRAN D, FEISZLI M. What makes training multi-modal classification networks hard?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12692-12702.
[25] JOYCE R J, AMLANI D, NICHOLAS C, et al. MOTIF: a malware reference dataset with ground truth family labels[J]. Computers & Security, 2023, 124: 102921.
[26] GEORGE A L. DikeDataset—a dataset with labeled benign and malicious files [EB/OL]. (2021-03-12)[2023-12-21]. https://github.com/iosifache/DikeDataset.
[27] MERCALDO F, MARTINELLI F, SANTONE A. Image-based malware detection through a deep neuro-fuzzy model[C]//Proceedings of the IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2023: 1-7.
[28] GAO Y, HASEGAWA H, YAMAGUCHI Y, et al. Malware detection by control-flow graph level representation learning with graph isomorphism network[J]. IEEE Access, 2022, 10: 111830-111841.
[29] WEI C X, LI Q, GUO D, et al. Toward identifying APT malware through API system calls[J]. Security and Communication Networks, 2021, 2021: 8077220.
[30] KRČÁL M, ŠVEC O, BÁLEK M, et al. Deep convolutional malware classifiers can learn from raw executables and labels only[C]//Proceedings of the International Conference on Lea-rning Representations, 2018. |