计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 270-280.DOI: 10.3778/j.issn.1002-8331.2407-0111

• 图形图像处理 • 上一篇    下一篇

基于小目标遮挡感知的烟头检测算法

田艳萍,金淼,陈习文,张军,刘莉,余锋,姜明华   

  1. 1.武汉纺织大学 计算机与人工智能学院,武汉 430200 
    2.中国电力科学研究院,武汉 430074
    3.湖北省服装信息化工程技术研究中心,武汉 430200
    4.南洋理工大学 电气与电子工程学院,新加坡 639798
  • 出版日期:2025-10-15 发布日期:2025-10-15

Cigarette Butt Detection Algorithm Based on Small Target Occlusion-Aware

TIAN Yanping, JIN Miao, CHEN Xiwen, ZHANG Jun, LIU Li, YU Feng, JIANG Minghua   

  1. 1.School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430200, China
    2.China Electric Power Research Institute, Wuhan 430074, China
    3.Engineering Research Center of Hubei Province for Clothing Information, Wuhan 430200, China
    4.School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Online:2025-10-15 Published:2025-10-15

摘要: 在复杂的电力作业场景中,烟头通常为小目标,且容易受到其他物体的遮挡,现有的小目标检测方法在多尺度特征融合和遮挡感知方面仍存在不足,尚未充分考虑电力场景的特殊需求。为解决这一问题,提出了一种适用于电力场景下小目标遮挡感知的烟头检测算法CBD-STOA。针对电力场景下烟头小目标检测精度低的问题,在颈部网络中引入了多尺度序列特征融合模块SSFF,以增强网络的多尺度信息提取能力,从而提高检测精度。为了应对烟头密集场景中的高误报率问题,CBD-STOA设计了三重特征融合模块TFF,通过融合不同尺度的特征图来增加细节信息,减少误报率。为了解决烟头遮挡的问题,CBD-STOA设计了遮挡感知检测头OADHead,通过执行多尺度空间传播,充分利用上下文信息来增强模型对特征图的全局感知,从而提高模型在部分遮挡情况下的检测能力。在自制烟头数据集ElectricSmoke上的实验结果显示,CBD-STOA算法的mAP50和mAP50-95相较于原始的YOLOv8n算法分别提高了2.0个百分点和4.1个百分点,同时在TinyPerson数据集上也有着不错的表现。该研究为小目标遮挡检测提供了新的思路和方法。

关键词: 电力安全, 小目标检测, 遮挡感知, 序列特征融合

Abstract: In complex power operation scenarios, cigarette butts are typically small targets and are easily occluded by other objects. Existing small object detection methods face limitations in multi-scale feature fusion and occlusion awareness, and fail to fully address the specific needs of power scenarios. To address these challenges, the paper proposes the CBD-STOA algorithm for cigarette butt detection with occlusion awareness in power scenes. Firstly, a multi-scale sequence feature fusion module (SSFF) is introduced into the neck network to improve detection accuracy for small objects. Secondly, a triple feature fusion module (TFF) is designed to reduce false positive rates in dense scenes by enhancing feature details through multi-scale feature fusion. Finally, an occlusion-aware detection head (OADHead) is developed to improve detection under partial occlusion by leveraging multi-scale spatial propagation and contextual information. Experiments on the custom ElectricSmoke dataset show that CBD-STOA achieves a 2.0 and 4.1 percentage points improvement in mAP50 and mAP50-95, respectively, compared to the original YOLOv8n algorithm, with strong performance on the TinyPerson dataset as well.

Key words: power grid security, small target detection, occlusion-aware, sequence feature fusion