[1] WEN D W, HUANG X, BOVOLO F, et al. Change detection from very-high-spatial-resolution optical remote sensing images: methods, applications, and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 68-101.
[2] ZHU Q Q, GUO X, DENG W H, et al. Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 63-78.
[3] SHAFIQUE A, CAO G, KHAN Z, et al. Deep learning-based change detection in remote sensing images: a review[J]. Remote Sensing, 2022, 14(4): 871.
[4] 张省, 李山山, 魏国芳, 等. 面向精细化多尺度特征的遥感图像目标检测[J]. 遥感学报, 2024, 26(12): 2616-2628.
ZHANG S, LI S S, WEI G F, et al. Refined multi-scale feature-oriented object detection of remote sensing images[J]. National Remote Sensing Bulletin, 2024, 26(12): 2616-2628.
[5] SARANYA K R L, SATISH K V, REDDY C S. Remote sensing enabled essential biodiversity variables for invasive alien species management: towards the development of spatial decision support system[J]. Biological Invasions, 2024, 26(4): 943-951.
[6] HUSSAIN M, CHEN D M, CHENG A, et al. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106.
[7] PENG D F, ZHANG Y J. Building change detection by combining LiDAR data and ortho image[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 3: 669-676.
[8] PEIMAN R. Pre-classification and post-classification change-detection techniques to monitor land-cover and land-use change using multi-temporal Landsat imagery: a case study on Pisa Province in Italy[J]. International Journal of Remote Sensing, 2011, 32(15): 4365-4381.
[9] DENG J S, WANG K, DENG Y H, et al. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[J]. International Journal of Remote Sen-sing, 2008, 29(16): 4823-4838.
[10] BONTEMPS S, BOGAERT P, TITEUX N, et al. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution[J]. Remote Sensing of Environment, 2008, 112(6): 3181-3191.
[11] CHEN G, HAY G J, CARVALHO L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14): 4434-4457.
[12] MA L, LI M C, BLASCHKE T, et al. Object-based change detection in urban areas: the effects of segmentation strategy, scale, and feature space on unsupervised methods[J]. Remote Sensing, 2016, 8(9): 761.
[13] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publis-hing, 2015: 234-241.
[14] DAUDT R, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 4063-4067.
[15] YUAN L, LI Y, SI Y, et al. Multi-Objects change detection based on Res-UNet[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, 2021: 4364-4367.
[16] CHEN T, LU Z Y, YANG Y, et al. A Siamese network based U-Net for change detection in high resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2357-2369.
[17] CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.
[18] 吕少云, 李佳田, 阿晓荟, 等. Res_ASPP_UNet++: 结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J]. 遥感学报, 2023, 27(2): 502-519.
LYU S Y, LI J T, A X H, et al. Res_ASPP_UNet++: building an extraction network from remote sensing imagery combining depthwise separable convolution with atrous spatial pyramid pooling[J]. National Remote Sensing Bulletin, 2023, 27(2): 502-519.
[19] MIAO L Z, LI X T, ZHOU X X, et al. SNUNet3+: a full-scale connected Siamese network and a dataset for cultivated land change detection in high-resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-18.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 6000-6010.
[21] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[22] CHEN H, QI Z, SHI Z. Remote sensing image change dete-ction with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[23] BANDARA W G C, PATEL V M. A Transformer-based Siamese network for change detection[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2022: 207-210.
[24] NOMAN M, FIAZ M, CHOLAKKAL H, et al. Remote sen-sing change detection with transformers trained from scratch[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14.
[25] CHEN Z L, ZHOU Y, WANG B, et al. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191: 203-222.
[26] REN H J, XIA M, WENG L G, et al. Dual-attention-guided multiscale feature aggregation network for remote sensing image change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 4899-4916.
[27] LIU W, LIN Y Y, LIU W J, et al. An attention-based multiscale transformer network for remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 599-609.
[28] XU Q, MA Z C, HE N, et al. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 154: 106626.
[29] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[30] DING M Y, XIAO B, CODELLA N, et al. DaViT: dual atte-ntion vision Transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2022: 74-92.
[31] WANG H N, CAO P, WANG J Q, et al. UCTransNet: rethin-king the skip connections in U-Net from a channel-wise perspective with transformer[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022: 2441-2449.
[32] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv: 2109.04335, 2021.
[33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
[34] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[35] SHI Q, LIU M X, LI S C, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
[36] FANG S, LI K Y, SHAO J Y, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3056416. |