[1] 张建超, 陈湘松, 郝如江, 等. 高速动车齿轮箱故障诊断技术研究综述[J]. 机械传动, 2023, 47(3): 133-140.
ZHANG J C, CHEN X S, HAO R J, et al. Review of fault diag-nosis technology for gearboxes of high-speed EMU[J]. Journal of Mechanical Transmission, 2023, 47(3): 133-140.
[2] 陈再刚, 刘禹清, 周子伟, 等. 轨道交通牵引动力传动系统动力学研究综述[J]. 交通运输工程学报, 2021, 21(6): 31-49.
CHEN Z G, LIU Y Q, ZHOU Z W, et al. Review of dynamics research on traction power transmission system of rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 31-49.
[3] 叶宏鹏. 基于图像处理的动车轴端螺丝检测方法的研究[D]. 北京: 北京交通大学, 2018.
YE H P. Research on detection method of EMU axle-end bolts based on image processing[D]. Beijing: Beijing Jiaotong University, 2018.
[4] 路绳方. 复杂场景下动车底部螺栓丢失故障的自动检测[J]. 激光与光电子学进展, 2017, 54(11): 297-303.
LU S F. Automatic detection of bolt loss fault at the bottom of EMU in complex scenarios[J]. Progress in Laser and Optoelectronics, 2017, 54(11): 297-303.
[5] 费垚东, 李柏林, 范宏. TFDS中螺丝故障的自动识别算法研究[J]. 机械设计与制造, 2021(10): 97-101.
FEI Y D, LI B L, FAN H. Research on automatic identific-ation algorithm of bolt fault in TFDS[J]. Machinery Design & Manufacture, 2021(10): 97-101.
[6] DALAL N, TRIGGS B. Histograms of oriented gradientsfor human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[7] PENG J, XUE H, WEI Z, et al. Integrating multi-network topology for gene function prediction using deep neural networks[J]. Brief Bioinform, 2021, 22(2): 2096-2105.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] ZHANG J, LIU Y, LIU H. Distractor-aware visual tracking using hierarchical correlation filters adaptive selection[J]. Applied Intelligence, 2022, 52(6): 6129-6147.
[11] ZHANG J, JINX, SUN J, et al. Dual model learning combined with multiple feature selection for accurate visual trac-king[J]. IEEE Access, 2019, 7: 43956-43969.
[12] XIN N, KE G, LI W, et al. Feature refinement and filter network for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(9): 3391-3402.
[13] 赵江平, 徐恒, 党悦悦. 基于改进Faster R-CNN的铁路客车螺丝检测研究[J]. 中国安全科学学报, 2021, 31(7): 82-89.
ZHAO J P, XU H, DANG Y Y. Research on screw detection of railway passenger cars based on improved faster R-CNN[J]. China Safety Science Journal, 2021, 31(7): 82-89.
[14] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015.
[15] 雷威, 杜森, 张皓泽, 等. 一种基于图像处理的列车车底螺丝丢失检测方法: CN202210067611.2[P]. 2022-05-07.
LEI W, DU S, ZHANG H Z, et al. A train undercarriage bolt loss detection method based on image processing: CN2022-10067611.2[P]. 2022-05-07.
[16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[17] 邹一鸣, 李鹏, 林群煦, 等. 基于改进YOLOv5算法的地铁车辆转向架螺丝缺失检测[J]. 机械工程师, 2023(9): 50-54.
ZOU Y M, LI P, LIN Q X, et al. Detection of missing bolts in metro vehicle bogies based on improved YOLOv5 algorithm[J]. Mechanical Engineer, 2023(9): 50-54.
[18] Ultralytics. YOLOv5[EB/OL]. (2022-04-10)[2023-07-18]. https://github.com/ultralytics/yolov5.
[19] 牛鑫宇, 毛鹏军, 段云涛, 等. 基于YOLOv5s室内目标检测轻量化改进算法研究[J]. 计算机工程与应用, 2024, 60(3): 109-118.
NIU X Y, MAO P J, DUAN Y T, et al. Research on lightweight improved algorithm for indoor target detection based on YOLOv5s[J]. Computer Engineering and Applications, 2024, 60(3): 109-118.
[20] 何雨, 田军委, 张震, 等. YOLOv5目标检测的轻量化研究[J]. 计算机工程与应用, 2023, 59(1): 92-99.
HE Y, TIAN J W, ZHANG Z, et al. Lightweight research of YOLOv5 target detection[J]. Computer Engineering and Applications, 2023, 59(1): 92-99.
[21] SUNANDINI G, SIVANPILLAI R, SOWNYA V, et al. Significance of atrous spatial pyramid pooling (ASPP) in Deeplabv3+for water body segmentation[C]//Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, 2023: 744-749.
[22] QIU Y, LIU Y, CHEN Y, et al. A2SPPNet: attentive atrous spatial pyramid pooling network for salient object detection[J]. IEEE Transactions on Multimedia, 2023, 25: 1991-2006.
[23] JI J, LI S, LIAO X, et al. Semantic segmentation based on spatial pyramid pooling and multilayer feature fusion[J]. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15(3): 1524-1535.
[24] TANI Y, YAMAKKKKAWA S, YAKUSHIJIN S, et al. Sema-ntic segmentation of spine and femur bone using atrous spatial pyramid pooling-based U-Net with fully connected CRF[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2023: 4967-4972.
[25] CHUNLONG Z, PEILE H, SHENGHUA W, et al. Pavement defect detection algorithm based on improved YOLOv7 complex background[J]. IEEE Access, 2024, 12: 32870-32880.
[26] 郭迎, 梁睿琳, 王润民. 基于CNN图像增强的雾天跨域自适应目标检测[J]. 计算机工程与应用, 2023, 59(16): 187-195.
GUO Y, LIANG R L, WANG R M. Cross-domain adaptive object detection based on CNN image enhancement in foggy conditions[J]. Computer Engineering and Applications, 2023, 59(16): 187-195.
[27] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[28] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[29] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogn-ition, 2021: 13713-13722.
[30] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
[31] REN F, FEI J, LI H, et al. Steel surface defect detection using improved deep learning algorithm: ECA-SimSPPF-SIoU-YOLOv5[J]. IEEE Access, 2024, 12: 32545-32553.
[32] LI C. YOLOv6 v3.0: a full-scale reloading[J]. arXiv:2301. 05586, 2023.
[33] ZHAO X. A quality grade classification method for fresh tea leaves based on an improved YOLOv8x-SPPCSPC-CBAM model[J]. Scientific Reports, 2024, 14(1): 4166.
[34] 刘展威, 陈慈发, 董方敏. 基于YOLOv5s的航拍小目标检测改进算法研究[J]. 无线电工程, 2023, 53(10): 2286-2294.
LIU Z W, CHEN C F, DONG F M. Improved aerial small object detection algorithm based on YOLOv5s[J]. Radio Engineering, 2023, 53(10): 2286-2294.
[35] WANG C. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv:2309.11331, 2023.
[36] 赵楚, 段先华, 苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究[J]. 计算机工程与应用, 2023, 59(14): 201-208.
ZHAO C, DUAN X H, SU J K. Research on ceramic tile surface defect detection by improved faster RCNN[J]. Computer Engineering and Applications, 2023, 59(14): 201-208.
[37] 刘艳萍, 刘甜. 改进的Cascade RCNN行人检测算法研究[J]. 计算机工程与应用, 2022, 58(4): 229-236.
LIU Y P, LIU T. Improved Cascade RCNN pedestrian dete-ction algorithm research[J]. Computer Engineering and Applications, 2022, 58(4): 229-236.
[38] 龚陈博, 南卓江, 陶卫. 基于改进Faster RCNN的PCB表面缺陷检测研究[J]. 自动化仪表, 2024, 45 (7): 99-103.
GONG C B, NAN Z J, TAO W. Research on PCB surface defect detection based on improved faster RCNN [J]. Automation Instrument, 2024, 45 (7): 99-103. |