计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 341-357.DOI: 10.3778/j.issn.1002-8331.2505-0298

• 工程与应用 • 上一篇    下一篇

基于多维时空交互网络的农机轨迹行为模式识别方法

罗渝川,翟卫欣   

  1. 1.中国农业大学 信息与电气工程学院,北京 100083
    2.农业农村部 农机作业监测与大数据应用重点实验室,北京 100083
  • 出版日期:2025-10-15 发布日期:2025-10-15

Multidimensional Spatiotemporal Interaction Network for Agricultural Machinery Trajectory Operation Mode Identification

LUO Yuchuan, ZHAI Weixin   

  1. 1.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
    2.Key Laboratory of Agricultural Machinery Monitoring and Big Data Application, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 农机轨迹行为模式识别是一项多变量时间序列分类(multivariate time series classification,MTSC)任务,旨在提取农机轨迹数据中蕴藏的时空特征来识别农机轨迹行为模式,并为每个轨迹点分配相应的语义标签。针对现有方法对轨迹时空信息捕捉能力不足和识别精度不佳的问题,提出了多维时空交互网络(multidimensional spatiotemporal interaction network,MSINet)来识别农机轨迹的行为模式。提出了多维信息交互(multidimensional information interaction,MII)模块,其融合了图卷积与自注意力机制以捕捉轨迹点之间的局部关联与全局依赖,同时利用双向感知机制实现通道与空间维度的信息互补;设计了多路径特征提取(multipath feature extraction,MFE)模块,利用具有不同扩张率的卷积路径有效提取轨迹数据的多尺度时序特征。最后,开发了语义聚焦(semantic focus,SF)模块以高效地捕捉轨迹数据中的关键信息。为验证所提方法的有效性,在农业农村部农机作业监测与大数据应用重点实验室提供的轨迹数据集上展开了实验。实验结果表明,MSINet在水稻收割机和小麦收割机轨迹数据集上的准确率分别为91.62%和91.34%,F1 score分别为91.57%和86.98%,相较于当前表现最优的模型生成式对抗网络-双向长短期记忆网络(generative adversarial network-bidirectional long short-term memory network,GAN-BiLSTM),F1 score分别提升了5.57和3.72个百分点。

关键词: 农机轨迹行为模式识别, 多维时空交互网络(MSINet), 多维信息交互(MII), 多路径特征提取(MFE), 语义聚焦(SF)

Abstract: Agricultural machinery trajectory operation mode identification is a multivariate time series classification (MTSC) task, which aims to extract the spatiotemporal features embedded in agricultural machine trajectory data to identify the agricultural machine trajectory operation mode and assign the corresponding semantic labels to each trajectory point. Aiming at the problems of insufficient ability to capture spatiotemporal information of trajectories and poor identification accuracy of existing methods, multidimensional spatiotemporal interaction network (MSINet) is proposed to identify the operation mode of agricultural machine trajectories. Firstly, a multidimensional information interaction (MII) module is proposed, which integrates graph convolution and self-attention mechanisms to capture local associations and global dependencies between trajectory points, and also utilizes a bidirectional perception mechanism to achieve complementary information between channel and spatial dimensions. Subsequently, the multipath feature extraction (MFE) module is designed to effectively extract multi-scale temporal features of trajectory data using convolutional paths with different dilation rates. Finally, a semantic focus (SF) module is developed to efficiently capture the key information in the trajectory data. To verify the effectiveness of the proposed method, experiments have conducted on the trajectory dataset provided by the Key Laboratory of Agricultural Machinery Monitoring and Big Data Applications Ministry of Agriculture and Rural Affairs. The experimental results show that the accuracy of MSINet on the rice harvester and wheat harvester trajectory datasets is 91.62% and 91.34%, respectively, and the F1 score is 91.57% and 86.98%, respectively. Compared with the current best-performing model generative adversarial network-bidirectional long short-term memory network(GAN-BiLSTM), the F1 score has increased by 5.57 and 3.72 percentage points, respectively.

Key words: agricultural machinery trajectory operation mode identification, multidimensional spatiotemporal interaction network (MSINet), multidimensional information interaction (MII), multipath feature extraction (MFE), semantic focus (SF)