[1] 刘绪颖, 卢文达, 王剑, 等. 融合多变量序列时空信息的事件早期识别方法[J]. 计算机工程与应用, 2023, 59(17): 116-122.
LIU X Y, LU W D, WANG J, et al. Early event detection based on multivariate spatial-temporal fusion[J]. Computer Engineering and Applications, 2023, 59(17): 116-122.
[2] 朱秀芳, 李石波, 肖国峰. 基于无人机遥感影像的覆膜农田面积及分布提取方法[J]. 农业工程学报, 2019, 35(4): 106-113.
ZHU X F, LI S B, XIAO G F. Method on extraction of area and distribution of plastic-mulched farmland based on UAV images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 106-113.
[3] 彭汪忆楠, 赖惠成, 于逸然, 等. 基于[K]-means++算法与YDSE算法的多农机协同优化[J]. 计算机应用研究, 2025, 42(5): 1453-1461.
PENG W, LAI H C, YU Y R, et al. Cooperative optimization of multi-farm machine based on [K]-means ++ algorithm and YDSE algorithm[J]. Application Research of Computers, 2025, 42(5): 1453-1461.
[4] 金诚谦, 陈钧龙, 刘政, 等. 大田作业场景中农机协同作业技术发展综述[J]. 农业工程学报, 2025, 41(14): 1-13.
JIN C Q, CHEN J L, LIU Z, et al. Review of the developments of cooperative operation technologies for agricultural machinery in field operation scenarios[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(14): 1-13.
[5] APAZHEV A K, FIAPSHEV A G, SHEKIKHACHEV I A, et al. Energy efficiency of improvement of agriculture optimiz-ation technology and machine complex optimization[J]. E3S Web of Conferences, 2019, 124: 05054.
[6] HUANG Y B, CHEN Z X, YU T, et al. Agricultural remote sensing big data: management and applications[J]. Journal of Integrative Agriculture, 2018, 17(9): 1915-1931.
[7] OSINGA S A, PAUDEL D, MOUZAKITIS S A, et al. Big data in agriculture: between opportunity and solution[J]. Agricultural Systems, 2022, 195: 103298.
[8] 孙根云, 孙超, 张爱竹. 融合多尺度与边缘特征的道路提取网络[J]. 测绘学报, 2024, 53(12): 2233-2243.
SUN G Y, SUN C, ZHANG A Z. Road extraction networks fusing multiscale and edge features[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2233-2243.
[9] 王昊天, 郑栋毅, 刘芳, 等. 面向多元时序数据的个性化联邦异常检测方法[J]. 计算机工程与应用, 2022, 58(11): 60-65.
WANG H T, ZHENG D Y, LIU F, et al. Personalized federated anomaly detection method for multivariate time series data[J]. Computer Engineering and Applications, 2022, 58(11): 60-65.
[10] 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342.
WANG J, LI Y X. Research on stock return forecast by NS-FEDformer model[J]. Computer Engineering and Applic-ations, 2025, 61(9): 334-342.
[11] 张菊平, 李路. IMGAF-RLNet模型的股指趋势预测研究[J]. 计算机工程与应用, 2025, 61(6): 229-243.
ZHANG J P, LI L. IMGAF-RLNet model for stock index trend forecasting[J]. Computer Engineering and Applications, 2025, 61(6): 229-243.
[12] 向晓倩, 陈璟. 基于双重注意力时空图卷积网络的行人轨迹预测[J]. 浙江大学学报(工学版), 2024, 58(12): 2586-2595.
XIANG X Q, CHEN J. Pedestrian trajectory prediction based on dual-attention spatial-temporal graph convolutional network[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(12): 2586-2595.
[13] KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4909-4926.
[14] RAHMANI S, BAGHBANI A, BOUGUILA N, et al. Graph neural networks for intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8846-8885.
[15] MUHAMMAD K, ULLAH A, LLORET J, et al. Deep lea-rning for safe autonomous driving: current challenges and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4316-4336.
[16] HAN Z C, WU Y W, LI T, et al. An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 1797-1814.
[17] YANG C, WANG X Z, YAO L N, et al. Dyformer: a dynamic transformer-based architecture for multivariate time series classification[J]. Information Sciences, 2024, 656: 119881.
[18] LI G Z, CHOI B, XU J L, et al. ShapeNet: a Shapelet-neural network approach for multivariate time series classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(9): 8375-8383.
[19] ZHENG Y, LIU Q, CHEN E H, et al. Time series classific-ation using multi-channels deep convolutional neural networksr[C]//Proceedings of the 15th International Conference on Web-Age Information Management. Cham: Springer, 2014: 298-310.
[20] LIU M H, REN S Q, MA S Y, et al. Gated transformer networks for multivariate time series classification[J]. arXiv: 2103.14438, 2021.
[21] ZUO R D, LI G Z, CHOI B, et al. SVP-T: a shape-level variable-position transformer for multivariate time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 11497-11505.
[22] ZHAO F, HE Y Y, SONG J, et al. Smart UAV-assisted blueberry maturity monitoring with Mamba-based computer vision[J]. Precision Agriculture, 2025, 26(4): 56.
[23] DIAO Z H, MA S S, LI J B, et al. Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s[J]. Precision Agriculture, 2025, 26(3): 1-23.
[24] DE SOUZA F L P, SHIRATSUCHI L S, DIAS M A, et al. A neural network approach employed to classify soybean plants using multi-sensor images[J]. Precision Agriculture, 2025, 26(2): 1-10.
[25] LI D, LIU X, ZHOU K, et al. Discovering spatiotemporal characteristics of the trans-regional harvesting operation using big data of GNSS trajectories in China[J]. Computers and Electronics in Agriculture, 2023, 211: 108003.
[26] LI H C, GAO F, ZUO G C. Research on the agricultural machinery path tracking method based on deep reinforcement learning[J]. Scientific Programming, 2022, 2022(1): 6385972.
[27] AHMAD BHAT S, HUANG N F. Big data and AI revolution in precision agriculture: survey and challenges[J]. IEEE Access, 2021, 9: 110209-110222.
[28] LEE J W, KIM J S, KIM K U. Computer simulations to maximise fuel efficiency and work performance of agricultural tractors in rotovating and ploughing operations[J]. Biosystems Engineering, 2016, 142: 1-11.
[29] CHEN Y, LI G Y, ZHANG X Q, et al. Identifying field and road modes of agricultural Machinery based on GNSS recordings: a graph convolutional neural network approach[J]. Computers and Electronics in Agriculture, 2022, 198: 107082.
[30] KORTENBRUCK D, GRIEPENTROG H W, PARAFOROS D S. Machine operation profiles generated from ISO 11783 communication data[J]. Computers and Electronics in Agriculture, 2017, 140: 227-236.
[31] DUTTMANN R, BRUNOTTE J, BACH M. Spatial analyses of field traffic intensity and modeling of changes in wheel load and ground contact pressure in individual fields during a silage maize harvest[J]. Soil and Tillage Research, 2013, 126: 100-111.
[32] CHEN Y, ZHANG X Q, WU C C, et al. Field-road trajectory segmentation for agricultural machinery based on direction distribution[J]. Computers and Electronics in Agriculture, 2021, 186: 106180.
[33] POTEKO J, EDER D, NOACK P O. Identifying operation modes of agricultural vehicles based on GNSS measurements[J]. Computers and Electronics in Agriculture, 2021, 185: 106105.
[34] XIAO Y Z, MO G Z, XIONG X Y, et al. DR-XGBoost: an XGBoost model for field-road segmentation based on dual feature extraction and recursive feature elimination[J]. International Journal of Agricultural and Biological Engineering, 2023, 16(3): 169-179.
[35] ZHAI W X, XIONG X Y, MO G Z, et al. A Bagging-SVM field-road trajectory classification model based on feature enhancement[J]. Computers and Electronics in Agriculture, 2024, 217: 108635.
[36] ZHANG X Q, CHEN Y, JIA J P, et al. Multi-view density-based field-road classification for agricultural machinery: DBSCAN and object detection[J]. Computers and Electronics in Agriculture, 2022, 200: 107263.
[37] CHEN Y, QUAN L, ZHANG X Q, et al. Field-road classification for GNSS recordings of agricultural machinery using pixel-level visual features[J]. Computers and Electronics in Agriculture, 2023, 210: 107937.
[38] ZHAI W X, MO G Z, XIAO Y Z, et al. GAN-BiLSTM network for field-road classification on imbalanced GNSS rec-ordings[J]. Computers and Electronics in Agriculture, 2024, 216: 108457.
[39] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[40] KITAEV N, KAISER ?, LEVSKAYA A. Reformer: the efficient transformer[J]. arXiv:2001.04451, 2020.
[41] ANDONI A, INDYK P, LAARHOVEN T, et al. Practical and optimal LSH for angular distance[J]. arXiv:1509.02897, 2015.
[42] WANG A, CHEN H, LIN Z J, et al. RepViT: revisiting mob-ile CNN from ViT perspective[J]. arXiv:2307.09283, 2023.
[43] ZHU L, WANG X J, KE Z H, et al. Biformer: vision transformer with bi-level routing attention[J]. arXiv:2303.08810, 2023.
[44] SHU S Q, YU H W, YU J X. A novel video understanding network based on Poolformer and transformer[C]//Proceedings of the 7th International Conference on Computer Science and Application Engineering. New York: ACM, 2023: 1-5.
[45] ILBERT R, ODONNAT A, FEOFANOV V, et al. SAMformer: unlocking the potential of transformers in time series forecasting with sharpness-aware minimization and channel-wise attention[J]. arXiv:2402.10198, 2024.
[46] SHAKER A, MAAZ M, RASHEED H, et al. Swiftformer: efficient additive attention for transformer-based real-time mobile vision applications[J]. arXiv:2303.15446, 2023.
[47] YU W H, LUO M, ZHOU P, et al. Metaformer is actually what you need for visionn[J]. arXiv:2111.11418, 2021.
[48] BISWAL A, PATEL L, JHA S, et al. Text2SQL is not enough: unifying AI and databases with TAG[J]. arXiv:2408. 14717, 2024.
[49] SCHUESSLER N, AXHAUSEN K W. Processing raw data from global positioning systems without additional inform-ation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2105(1): 28-36.
[50] ZHENG Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-41. |