计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 327-340.DOI: 10.3778/j.issn.1002-8331.2405-0370

• 网络、通信与安全 • 上一篇    下一篇

针对联邦学习隐私保护及恶意检测的联合算法

徐宜航,毛玉星   

  1. 重庆大学 输变电装备技术全国重点实验室,重庆 400044
  • 出版日期:2025-10-15 发布日期:2025-10-15

Joint Algorithm for Federated Learning Privacy Preservation and Malicious Detection

XU Yihang, MAO Yuxing   

  1. State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 针对联邦学习中同时存在的数据隐私保护与恶意对手检测问题,提出同态加密-阈值秘密共享联合加密算法(HE-SS)。该算法基于消息向量映射为明文多项式插值原理,在同态加密复平面单位圆编码插槽之外确定一组阈值共享密钥,将梯度信息隐式地转化为密文片段,并利服务器协同计算,建立抵抗性聚合协议。该算法在多方密文运算中保持线性同态性,支持不揭露隐私的向量相似度判别,解决了多方计算问题中隐私保护与恶意检测间的内在矛盾,实现了特定环境下匿名化恶意节点识别。对于同时存在推理攻击和拜占庭攻击的联邦学习场景,测试结果表明,HE-SS算法能够较好地保护客户端敏感原始信息,并且在全局模型收敛性以及准确率表现上,优于现有主流防御方案。

关键词: 联邦学习(FL), 隐私保护, 对手检测, 同态加密, 阈值密钥共享

Abstract: The homomorphic encryption-threshold secret sharing (HE-SS) joint encryption algorithm is proposed to address the issues of data privacy preservation and malicious adversary detection in federated learning. Based on the interpolation principle of mapping message vectors to plaintext polynomials, a set of threshold secret sharing keys outside the encoding slots of the homomorphic encryption complex plane unit circle is established. The gradient information is implicitly transformed into ciphertext fragments and collaborative computation on the server is enabled, establishing a resilient aggregation protocol. Linear homomorphism is maintained in multi-party ciphertext operations by the algorithm, allowing for vector similarity discrimination without disclosing privacy. The inherent contradiction between privacy preservation and malicious detection in multi-party computation problems is resolved, and anonymous malicious node identification is achieved in specific environments. In a federated learning environment with both inference attacks and Byzantine attacks, test results demonstrate that sensitive client raw information is effectively protected and the existing mainstream defense solutions are outperformed in terms of global model convergence and accuracy by the HE-SS algorithm.

Key words: federal learning(FL), privacy preserving, adversary detection, homomorphic encryption, threshold secret sharing