
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 19-36.DOI: 10.3778/j.issn.1002-8331.2405-0349
白金龙,曹利峰,万季玲,李金辉,杜学绘
出版日期:2025-01-15
发布日期:2025-01-15
BAI Jinlong, CAO Lifeng, WAN Jiling, LI Jinhui, DU Xuehui
Online:2025-01-15
Published:2025-01-15
摘要: 区块链作为数字产业发展的新方向、经济社会发展的新兴技术,是建设信息化国家的战略产业,将对未来生产、生活方式带来日益深远的影响。随着区块链技术的广泛应用和人们对数字隐私不断重视,区块链隐私保护成为了制约区块链推广的关键因素。现在亟须对区块链隐私保护技术研究进展进行分析和梳理,为未来区块链隐私保护重点问题的进一步研究和突破提供依据。通过分析区块链隐私特点,从数据层、网络层、交易层和应用层总结了区块链在隐私保护方面存在的风险,详细列举了当前各层次隐私保护相关技术、原理和应用场景。对区块链隐私保护技术在新兴技术发展下的挑战和发展方向进行了展望。
白金龙, 曹利峰, 万季玲, 李金辉, 杜学绘. 区块链隐私保护技术研究进展[J]. 计算机工程与应用, 2025, 61(2): 19-36.
BAI Jinlong, CAO Lifeng, WAN Jiling, LI Jinhui, DU Xuehui. Research Progress of Blockchain Privacy Protection Technology[J]. Computer Engineering and Applications, 2025, 61(2): 19-36.
| [1] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. (2009)[2024-05-15]. https://bitcoin.org/bitcoin.pdf. [2] ANDROULAKI E, BARGER A, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains[C]//Proceedings of the Thirteenth EuroSys Conference, 2018: 1-15. [3] DEZA A, HEARN M, BROWN R G. Design choices for blockchain architectures: a deep dive into corda[EB/OL]. (2018)[2024-05-15]. https://www.corda.net/corda. html. [4] LI X, WANG Y. DASHING: a high-performance blockchain consensus crotocol[J]. IEEE Transactions on Computers, 2020, 69(12): 1713-1727. [5] 信息通信研究院. 区块链白皮书[Z]. 2022. China Academy of Information and Communications Technology. White paper of blockchain[Z]. 2022. [6] 田国华, 胡云瀚, 陈晓峰. 区块链系统攻击与防御技术研究进展[J]. 软件学报, 2021, 32(5): 1495-1525. TIAN G H, HU Y H, CHEN X F. A survey on attack and defense of block-chain system[J]. Journal of Software, 2021, 32(5): 1495-1525. [7] 曾萍, 陈志娟, 马英杰, 等. 基于区块链的 IoV 隐私保护认证方案设计[J]. 计算机应用研究, 2021, 38(10): 2919-2925. ZENG P, CHEN Z J, MA Y J, et al. Blockchain-based privacy-preserving certificateless authentication scheme for internet of vehicles[J]. Application Research of Computers, 2021, 38(10): 2919-2925. [8] 尹紫荆. 基于区块链的安全多方计算隐私保护技术研究[D]. 成都: 电子科技大学, 2022. YIN Z J. Research on secure multi-party computing privacy protection technology based on blockchain[D]. Chengdu: School of Computer Science and Engineering, 2022. [9] MEIKLEJOHN S, ORLANDI C. Privacy-enhancing overlays in bitcoin[C]//Proceedings of the Financial Cryptography Workshops, 2015: 127-141. [10] RUFFING T, MORENO S P. Valueshuffle: mixing confidential transactions for comprehensive transaction privacy in bitcoin[C]//Proceedings of the Financial Cryptography and Data Security, 2017: 133-154. [11] 祝烈煌, 高峰, 沈蒙, 等. 区块链隐私保护研究综述[J]. 计算机研究与发展, 2017, 54(10): 2170-2186. ZHU L H, GAO F, SHEN M, et al. Survey on preserving techniques for blockchain technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. [12] 王宗慧, 张胜利, 金石, 等. 区块链数据隐私保护研究[J]. 物联网学报, 2018, 2(3): 71-81. WANG Z H, ZHANG S L, JIN S, et al. Survey on privacy preserving techniques for blockchain[J]. Chinese Journal on Internet of Things, 2018, 2(3): 71-81. [13] 张奥, 白晓颖. 区块链隐私保护研究与实践综述[J]. 软件学报, 2020, 31(5): 1406-1434. ZHANG A, BAI X Y. Survey of research and practices on blockchain privacy protection[J]. Journal of Software, 2020, 31(5): 1406-1434. [14] 谭朋柳, 徐滕, 杨思佳, 等. 区块链隐私保护技术研究综述[J]. 计算机应用研究, 2024, 41(8): 1-10. TAN P L, XU T, YANG S J, et al. Review of research on blockchain privacy protection technologies[J]. Application Research of Computers, 2024, 41(8): 1-10. [15] 谢晴晴, 杨念民, 冯霞. 区块链交易隐私保护技术综述[J]. 计算机应用, 2023, 43(10): 2996-3007. XIE Q Q, YANG N M, FENG X. Survey on privacy-preserving technology for blockchain transaction[J]. Journal of Computer Applications, 2023, 43(10): 2996-3007. [16] 刘峰, 杨杰, 齐佳音, 等. 区块链密码学隐私保护技术综述[J]. 网络与信息安全学报, 2022, 8(4): 29-44. LIU F, YANG J, QI J Y, et al. Survey on blockchain privacy protection techniques in cryptography[J]. Chinese Journal of Network and Information Security, 2022, 8(4): 29-44. [17] 李凤华, 李晖, 贾焰, 等. 隐私计算研究范畴及发展趋势[J]. 通信学报, 2016, 37(4): 1-11. LI F H, LI H, JIA Y, et al. Privacy computing: concept, connotation and its research trend[J]. Journal on Communications, 2016, 37(4): 1-11. [18] 梁秀波, 吴俊涵, 赵昱, 等. 区块链数据安全管理和隐私保护技术研究综述[J]. 浙江大学学报 (工学版), 2022, 56(1): 1-15. LIANG X B, WU J H, ZHAO Y, et al. Overview of research on blockchain data security management and privacy protection technology[J]. Journal of Zhejiang University (Engineering Edition), 2022, 56(1): 1-15. [19] KAMINSKY D. Black Ops of TCP/IP[EB/OL]. (2011)[2024-05-15]. https://fahrplan.events.ccc.de/camp/2011/Fahrplan/events/4555.en.html. [20] REID F, HARRIGAN M. An analysis of anonymity in the Bitcoin system[C]//Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), 2011: 1318-1326. [21] KOSHY P, KOSHY D, MCDANIEL P. An analysis of anonymity in Bitcoin using P2P network traffic[C]//Proceedings of the 18th International Conference on Cryptography and Data Security, 2014: 469-485. [22] ANDROULAKI E, KARAME G, ROESCHLIN M, et al. Evaluating user privacy in Bitcoin[C]//Proceedings of the Financial Cryptography and Data Security, 2013: 34-51. [23] HE N, WU G. LevelDB: a fast and lightweight key-value database library by Google[C]//Proceedings of the IEEE International Conference for High Performance Computing, 2010: 303-310. [24] The blockchain size of Bitcoin[EB/OL]. (2021)[2024-05-15]. https://blockchair.com/ethereum/charts/blockchain-size. [25] AHLSWEDE R, NING C. Network information flow[J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216. [26] RAMAN R K, VARSHNEY L R. Dynamic distributed storage for scaling blockchains[C]//Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), 2018: 2619-2623. [27] QI X D, ZHANG Z, JIN C Q, et al. A reliable storage partition for permissioned blockchain[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(1): 14-27. [28] ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding[C]//Proceedings of the ACM Conference on Computer and Communications Security, 2019: 932-948. [29] JIA D Y, XIN J C, WANG Z Q, et al. ElasticChain: support very large blockchain by reducing data redundancy[C]//Proceedings of the Springer International Conference on Web and Big Data, 2018: 440-454. [30] 贾大宇, 信俊昌, 王之琼, 等. 存储容量可扩展区块链系统的高效查询模型 [J]. 软件学报, 2019, 30(9): 2655-2670. JIA D Y, XIN J C, WANG Z Q, et al. Efficient query model for storage capacity scalable blockchain system[J]. Journal of Software, 2019, 30(9): 2655-2670. [31] EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: a scalable blockchain protocol[C]//Proceedings of the Usenix Conference on Networked Systems Design and Implementation, 2016: 45-59. [32] 孙知信, 张鑫, 相峰, 等. 区块链存储可扩展性研究进展[J]. 软件学报, 2021, 32(1): 1-20. SUN Z X, ZHANG X, XIANG F, et al. Research progress of blockchain storage scalability[J]. Journal of Software, 2021, 32(1): 1-20. [33] HEPP T, SHARINGHOUSEN M, EHRET P, et al. On-chain vs. off-chain storage for supply and blockchain integration[J]. IT Information Technology, 2018, 60(5/6): 283-291. [34] ALI S, WANG G, WHITE B, et al. A blockchain-based decentralized data storage and access framework for pinger[C]//Proceedings of the 12th IEEE International Conference on Big Data Science and Engineering, 2018: 1303-1308. [35] AYOADE G, KARANDE V, KHAN L, et al. Decentralized IoT data management using blockchain and trusted execution environment[C]//Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration, 2018: 15-22. [36] XIAO Y, ZHANG N, LI J, et al. PrivacyGuard: enforcing private data usage control with blockchain and attested off-chain contract execution[C]//Proceedings of the European Symposium on Research in Computer Security, 2020: 610-629. [37] FROMKNECHT C, VELICANU D, YAKOUBOY S. Certcoin: a name coin based decentralized authentication system[EB/OL]. (2014)[2024-05-15]. http://courses.csail.mit.edu. [38] 彭慢煜, 范洪博, 孙一萌, 等. 基于密码累加器的区块链中间件身份认证方案[J]. 数据通信, 2023(4): 21-56. PENG M Y, FAN H B, SUN Y M, et al. Authentication scheme of blockchain middleware based on Password accumulator[J]. Data Communication, 2023(4): 21-56. [39] MATSUMOTO S, REISCHUK R. IKP: turning a PKI around with decentralized automated incentives[C]//Proceedings of 2017 IEEE Symposium on Security and Privacy, 2017: 410-426. [40] CHEN J, YAO S X, YUAN Q, et al. Certchain: public and efficient certificate audit based on blockchain for TLS connections[C]//Proceedings of IEEE Conference on Computer Communications, 2018: 2060-2068. [41] WANG Z, LIN J Q, CAI Q W, et al. Blockchainbased certificate transparency and revocation transparency[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 10958: 144-162. [42] ZYSKIND G, ZEKRIFA D M S, PENTLAND A, et al. Decentralizing privacy: using blockchain to protect personal data[C]//Proceedings of the IEEE Security and Privacy Workshops, 2015: 180-184. [43] MAESA D D F, MORI P, RICCI L. Blockchain based accesscontrol[C]//Proceedings of the IFIP International Conference on Distributed Applications and Interoperable Systems, 2017: 206-220. [44] 刘敖迪, 杜学绘, 王娜, 等. 基于区块链的大数据访问控制机制[J]. 软件学报, 2019, 30(9): 2636-2654. LIU A D, DU X H, WANG N, et al. Blockchain-based access control mechanism for big data[J]. Journal of Software, 2019, 30(9): 2636-2654. [45] 陈美宏, 袁凌云, 夏桐. 基于主从多链的数据分类分级访问控制模型[J]. 计算机应用, 2023(4): 1148-1157. CHEN M H, YUAN L Y, XIA T. Data classification hierarchical access control model based on master-slave multi-link[J]. Journal of Computer Applications, 2023(4): 1148-1157. [46] CRUZ J, KAJI Y, YANAI N. RBAC-SC: role-based access control using smart contract[J]. IEEE Access, 2018, 6: 12240-12251. [47] OUADDAH A, ELKALAM A A, OUAHMAN A A. Towards a novel privacy preserving access control model based on blockchain technology in IoT[C]//Advances in Intelligent Systems and Computing, 2017: 523-533. [48] KARTHIKA R A, SRIRAMYA P. A blockchain-based access control system for cloud storage[C]//Proceedings of the International Conference on Information Management & Machine Intelligence, 2020: 545-554. [49] LE T, MUTKA M. CapChain: a privacy preserving access control framework based on blockchain for pervasive environments[C]//Proceedings of 2018 IEEE International Conference on Smart Computing, 2018: 57-64. [50] POON J, DRYJA T. The Bitcoin lightning network: scalable off-chain instant payments[EB/OL]. (2016)[2024-05-15]. https://blog.bitmex.com/wp-content/upload. [51] MARTINAZZI S, FLORI A. The evolving topology of the lightning network: Centralization, efficiency, robustness, synchronization, and anonymity[J]. PloS One, 2020, 15(1): e0225966. [52] HEE S H. Raiden network: scaling ethereum with off-chain state networks[EB/OL]. (2017)[2024-05-15]. https://raiden.network/101.html. [53] CORRIGAN-GIBBS H, FORD B. Dissent: accountable anonymous group messaging[C]//Proceedings of the 17th ACM Conference on Computer and Communications Security, 2010: 340-350. [54] 徐恪, 凌思通, 李琦, 等. 基于区块链的网络安全体系结构与关键技术研究进展[J]. 计算机学报, 2021, 44(1): 55-83. XU K, LING S T, LI Q, et al. Research progress of network security architecture and key technologies based on blockchain[J]. Chinese Journal of Computers, 2021, 44(1): 55-83. [55] YU Q, LI J, SHEN J. ID-based ring signature against continual side channel attack[J]. Symmetry-Basel, 2023, 15(1): 179. [56] SAMUEL O, OMOJO A B, MOHSIN S M, et al. An anonymous IoT-based E-health monitoring system using blockchain technology[J]. IEEE Systems Journal, 2023, 17(2): 2422-2433. [57] REED M G, SYVERSON P F, GOLDSCHLAG D M, et al. Anonymous connections and onion routing[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(4): 482-494. [58] JADAV N K, GUPTA R, ALSHEHRI M D, et al. Deep learning and onion routing-based collaborative intelligence framework for smart homes underlying 6G networks[J]. IEEE Trans on Network and Service Management, 2022, 19(3): 3401-3412. [59] GUPTA R, JADAV N K, MANKODIYA H, et al. Blockchain and onion-routing-based secure message exchange system for edge-enabled IIoT[J]. IEEE Trans on Industrial Informatics, 2022, 19(2): 1965-1976. [60] DINGLEDINE R, MATHEWSON N, SYVERSON P, et al. Tor: the second-generation onion router[C]//Proceedings of the 13th Conference on USENIX Security Symposium, 2004: 303-320. [61] CHAKRAVARTY S, BARBERA M, PORTOKALIDIS G, et al. On the effectiveness of traffic analysis against anonymity networks using flow records[C]//Proceedings of the 15th International Conference on Passive and Active Measurement, 2014: 247-257. [62] LI X, ZHENG Z, CHENG P, et al. MACT: a multi-channel anonymous consensus based on Tor[J]. World Wide Web, 2023, 26(3): 1005-1029. [63] FREEDMAN M J. Design and analysis of an anonymous communication channel for the free haven project[EB/OL]. (2000)[2024-05-15]. https//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.8778. [64] MAYMOUNKOV P, KAASHOEK M F, ROWSTRON A I T. Kademlia: a peer-to-peer information system based on the XOR metric[C]//Proceedings of the International Workshop on Peer-to-Peer Systems, 2002: 53-65. [65] LI J. The development of blockchain privacy protection: from Bitcoin to Monero[C]//Proceedings of the Third International Conference on Electronics and Communication; Network and Computer Technology, 2022: 277-285. [66] RIVEST R L, SHAMIR A, TAUMAN Y. How to leak a secret[C]//Proceedings of the International Conference on Theory and Application of Cryptology and Information Security, 2001: 552-565. [67] PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]//Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, 1999: 223-238. [68] RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126. [69] GENTRY C. A fully homomorphic encryption scheme[D]. Stanford, CA: Stanford University, 2009. [70] ZHOU J, CHOO K K R, CAO Z, et al. PVOPM: verifiable privacy preserving pattern matching with efficient outsourcing in the malicious setting[J]. IEEE Transactions on Dependable and Secure Computing, 2021: 18(5): 2253-2270. [71] 杨亚涛, 赵阳, 张卷美, 等. 同态密码理论与应用进展[J]. 电子与信息学报, 2021, 43(2): 475-487. YANG Y T, ZHAO Y, ZHANG J M, et al. Recent development of theory and application on homomorphic encryption[J]. Journal of Electronics and Information Technology, 2021, 43(2): 475-487. [72] WeBank. FISCO BCOS blockchain[EB/OL]. (2018)[2024-05-15]. https://fisco bcos documentation.readthedocs.io/latest/docs/introduction. html. [73] GOLDWASSER S, MICALI S, RACKOFF C. The knowledge complexity of interactive proof systems[J]. SIAM Journal on Computing, 1989, 18(1): 186-208. [74] SASSON E, CHIESA A, GARMAN C, et al. Zerocash: decentralized anonymous payments from Bitcoin[C]//Proceedings of the 2014 IEEE Symposium on Security and Privacy, 2014: 459-474. [75] PARON B, HOWELL J, GENTRY C, et al. Pinocchio: nearly practical verifiable computation[C]//Proceedings of the IEEE Symposium on Security and Privacy, 2013: 238-252. [76] BUNZ B, AGRAWAL S, ZAMANI M, et al. Zether: towards privacy in a smart contract world[C]//Proceedings of the Financial Cryptography and Data Security, 2020: 423-443. [77] SEAN B, CHIESA A, GREEN M, et al. ZEXE: enabling decentralized private computation[C]//Proceedings of the 2020 IEEE Symposlum on Security and Privacy, 2020: 947-964. [78] VAN S N. CryptoNote v2.0[EB/OL]. (2013)[2024-05-15]. https://cryptonote.org/whitepaper.pdf. [79] CHAUM D L. Untraceable electronic mail, return addresses, and digital pseudonyms[J]. Communications of the ACM, 1981, 24: 84-90. [80] BONNEAU J, NARAYANAN A, MILLER A, et al. Mixcoin: anonymity for Bitcoin with accountable mixes[C]//Proceedings of the Financial Cryptography and Data Security, 2014: 486-504. [81] VALENTA L, ROWAN B. Blindcoin: blinded, accountable mixes for Bitcoin[C]//Proceedings of the Financial Cryptography and Data Security, 2015: 112-126. [82] DASH. Dash is digital cash[EB/OL]. (2017)[2024-05-15]. https://www.dash.org/. [83] MAXWELL G. CoinJoin: Bitcoin privacy for the real world[C]//Proceedings of the Post on Bitcoin Forum, 2013. [84] RUFFING T, MORENO-SANCHEZ P, KATE A, et al. Coinshuffle: practical decentralized coin mixing for Bitcoin[C]//Proceedings of the European Symposium on Research in Computer Security, 2014: 345-364. [85] ZIEGELDORF J H, GROSSMANN F, HENZE M, et al. Coinparty: secure multi-party mixing of Bitcoins[C]//Proceedings of the 5th ACM Conf. on Data and Application Security and Privacy, 2015: 75-86. [86] BITMIXER. Improving randomness for Bitcoin users[EB/OL]. (2008)[2024-05-15]. https://topbitcoinmixer.com/. [87] BIP32. Hierarchical deterministic (HD) wallets: generating and securing the wallet seed[EB/OL]. (2013)[2024-05-15]. https://github.com/bitcoin/bips. [88] FEYNMAN R P. Space-time approach to non-relativistic quantum mechanics[J]. Reviews of Modern Physics, 1948, 20(2): 367. [89] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303-332. [90] FERNáNDEZ-CARAMéS T M, FRAGA-LAMAS P. Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks[J]. IEEE Access, 2020, 8: 21091-21116. [91] 高振升, 曹利峰, 杜学绘. 基于区块链的访问控制技术研究进展[J]. 网络与信息安全学报, 2021, 7(6): 68-87. GAO Z S, CAO L F, DU X H. Research progress of access control based on blockchain[J]. Chinese Journal of Network and Information Security, 2021, 7(6): 68-87. [92] PEREZ A J, ZEADALLY S. Secure and privacy preserving crowdsensing using smart contracts[J]. Computer Science Review, 2022, 43: 100450. [93] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017: 1273-1282. [94] LI L, QIN J W, LUO J T. A blockchain-based federated-learning framework for defense against backdoor attacks[J]. Electronics, 2023, 12(11): 259062299. [95] WENG J, WENG J, ZHANG J, et al. DeepChain: auditable and privacy-preserving deep learning with block-chain-based incentive[J]. IEEE Transactions on Dependable and Secure Computing, 2021,18(5): 2438-2455. [96] MASHAHDI S, BAGHERPOUR B, ZAGHIAN A. A non interactive (t, n)-publicly verifiable multi-secret sharing scheme[J]. Designs, Codes and Cryptography, 2022, 90(8): 1761-1782. [97] VEUGEN T. Secure multi-party computation and its applications[C]//Proceedings of the 2022 International Conference on Innovations for Community Services. Cham: Springer, 2022: 3-5. |
| [1] | 江姝晨, 牛保宁, 高彦. 基于混合语义的切片级智能合约重入漏洞检测[J]. 计算机工程与应用, 2025, 61(1): 321-329. |
| [2] | 张苗, 李绍稳, 吴雨婷, 涂立静, 张磊, 杨尚雄. 实用拜占庭容错共识算法的奖惩机制优化研究[J]. 计算机工程与应用, 2024, 60(7): 266-273. |
| [3] | 李洋, 王静宇, 刘立新. 基于区块链的公平可验证搜索加密方案[J]. 计算机工程与应用, 2024, 60(6): 301-311. |
| [4] | 张世文, 陈双, 梁伟, 李仁发. 联邦学习中的攻击手段与防御机制研究综述[J]. 计算机工程与应用, 2024, 60(5): 1-16. |
| [5] | 倪雪莉, 马卓, 王群. 区块链P2P网络及安全研究[J]. 计算机工程与应用, 2024, 60(5): 17-29. |
| [6] | 蔡元海, 宋甫元, 黎凯, 陈彦宇, 付章杰. 高判别精度的区块链交易合法性检测方法[J]. 计算机工程与应用, 2024, 60(5): 271-280. |
| [7] | 李合计, 王传华, 徐欣. 推荐信誉模型与聚类分析协同优化的拜占庭算法[J]. 计算机工程与应用, 2024, 60(24): 282-290. |
| [8] | 姬婕, 岳鹏飞, 李雷孝, 杜金泽, 林浩, 高昊昱. 区块链在域名系统安全中的应用进展综述[J]. 计算机工程与应用, 2024, 60(21): 73-88. |
| [9] | 孙艳华, 王子航, 刘畅, 杨睿哲, 李萌, 王朱伟. 个性化联邦学习的相关方法与展望[J]. 计算机工程与应用, 2024, 60(20): 68-83. |
| [10] | 李光柱, 李雷孝, 高昊昱. 跨链技术发展与应用研究进展[J]. 计算机工程与应用, 2024, 60(2): 32-45. |
| [11] | 张铭泉, 杨甜, 朵春红. 改进PBFT算法的配电物联网接入认证方法[J]. 计算机工程与应用, 2024, 60(2): 279-287. |
| [12] | 李凤云, 郭昊, 毕远国, 李亦宁. 基于路径混淆的实时轨迹隐私保护方法[J]. 计算机工程与应用, 2024, 60(2): 288-294. |
| [13] | 张驰骋, 李雷孝, 杜金泽, 史建平. 可编辑区块链研究综述[J]. 计算机工程与应用, 2024, 60(18): 32-49. |
| [14] | 王心, 李欢, 张书华, 侯棚文, 叶小芬. 政府补贴下区块链投资策略与电商销售模式[J]. 计算机工程与应用, 2024, 60(17): 321-330. |
| [15] | 宁宇豪, 黄建华, 顾彬, 张文韬, 宫在为. 结合信誉跳跃一致性哈希的区块链分片协议[J]. 计算机工程与应用, 2024, 60(16): 276-287. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||