计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 357-369.DOI: 10.3778/j.issn.1002-8331.2505-0335

• 工程与应用 • 上一篇    下一篇

面向农机轨迹行为模式识别的频域注意力和U型残差网络

曹格齐,翟卫欣   

  1. 1.中国农业大学 信息与电气工程学院,北京 100083
    2.农业农村部农机作业监测与大数据应用重点实验室,北京 100083
  • 出版日期:2025-08-15 发布日期:2025-08-15

Frequency Attention and U-Shaped Residual Network for Agricultural Machinery Trajectory Operation Mode Identification

CAO Geqi, ZHAI Weixin   

  1. 1.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
    2.Key Laboratory of Agricultural Machinery Monitoring and Big Data Application, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 农业机械轨迹作业行为模式识别是一项多变量时间序列分类任务,旨在利用轨迹数据的时空特征识别农机的行为模式。针对已有方法未能从频率角度挖掘农机轨迹的全局特性以及识别精度不足的问题,提出了一种面向农机轨迹行为模式识别的频域注意力和U型残差网络FARNet。该网络包含两个不同网络分支,用于全面挖掘农机轨迹的依赖信息。其中一个分支搭载了基于频域注意力的Transformer(transformer based on frequency attention,FAT)来挖掘农机轨迹在频域空间的全局时序依赖;另一分支部署了基于正交约束的U型残差网络(U-shaped residual network based on orthogonal constraints,URNet),其以ResUnet作为骨干网络提取轨迹特征图在不同感受野的深层语义信息,探索轨迹特征间的局部空间依赖。最后设计了一种特征对齐学习模块(feature alignment learning module,FA)来融合并对齐两个分支的输出特征,全面调节农机轨迹在全局和局部不同范围下的上下文信息,提高算法的识别性能。为验证所提方法的有效性,在真实轨迹数据集上进行了实验,结果表明,所提方法相比现有的SOTA模型在水稻和小麦收割机轨迹数据集上的F1-score提高了13.94和11.47个百分点。

关键词: 农机轨迹行为模式识别, 时间序列分类, 残差神经网络, 二维特征图, 频域注意力

Abstract: Agricultural machinery trajectory operation mode identification is a multivariate time series classification task, which aims to identify the operation mode of agricultural machinery by using the spatiotemporal features of trajectory data. Aiming at the problems that the existing methods fail to mine the global characteristics of agricultural machinery trajectories from the frequency perspective and the identification accuracy is insufficient, a frequency attention and U-shaped residual network (FARNet) for agricultural machinery trajectory operation mode identification is proposed, which contains two different network branches for comprehensively mining the dependency information of agricultural machinery trajectories. One branch is equipped with Transformer based on frequency attention (FAT) to mine the global temporal correlation of agricultural machinery trajectories in the frequency domain space. The other branch deploys U-shaped residual network based on orthogonal constraints (URNet), which uses ResUnet as the backbone network to extract the deep semantic information of trajectory feature maps in different receptive fields and explore local spatial dependencies between trajectory features. Finally, a feature alignment learning module (FA) is designed to fuse and align the output features of the two branches, comprehensively adjust the contextual information of agricultural machinery trajectories in different global and local ranges, and improve the identification performance of the algorithm. To verify the effectiveness of the proposed method, experiments are carried out on a real trajectory dataset. The results show that the proposed method improves the F1-score by 13.94 and 11.47?percentage points on the paddy and wheat harvester trajectory datasets compared with the existing SOTA model.

Key words: agricultural trajectory operation mode identification, time series classification, residual neural network, two-dimensional feature map, frequency attention