[1] ZHANG F, CHEN T H, TENG S, et al. Model construction for field operation machinery selection and configuration in wheat-maize double cropping system[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 82-89.
[2] 刘卉, 孟志军, 王培, 等. 基于农机空间轨迹的作业面积的缓冲区算法[J]. 农业工程学报, 2015, 31(7): 180-184.
LIU H, MENG Z J, WANG P, et al. Buffer algorithms for operation area measurement based on global navigation satellite system trajectories of agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 180-184.
[3] LU E, XU L Z, LI Y M, et al. Modeling of working environment and coverage path planning method of combine harvesters[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 132-137.
[4] SUN J L, WANG Z, DING S H, et al. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors[J]. Biosystems Engineering, 2024, 246: 96-109.
[5] 吴才聪, 蔡亚平, 罗梦佳, 等. 基于时间窗的农机资源时空调度模型[J]. 农业机械学报, 2013, 44(5): 237-241.
WU C C, CAI Y P, LUO M J, et al. Time-windows based temporal and spatial scheduling model for agricultural machinery resources[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 237-241.
[6] WANG B, DU X X, WANG Y N, et al. Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery[J]. International Journal of Agricultural and Biological Engineering, 2024, 17(2): 27-36.
[7] POTEKO J, EDER D, NOACK P O. Identifying operation modes of agricultural vehicles based on GNSS measurements[J]. Computers and Electronics in Agriculture, 2021, 185: 106105.
[8] XIAO Y Z, MO G Z, XIONG X Y, et al. DR-XGBoost: an XGBoost model for field-road segmentation based on dual feature extraction and recursive feature elimination[J]. International Journal of Agricultural and Biological Engineering, 2023, 16(3): 169-179.
[9] CHEN Y, ZHANG X Q, WU C C, et al. Field-road trajectory segmentation for agricultural machinery based on direction distribution[J]. Computers and Electronics in Agriculture, 2021, 186: 106180.
[10] ZHAI W X, XIONG X Y, MO G Z, et al. A Bagging-SVM field-road trajectory classification model based on feature enhancement[J]. Computers and Electronics in Agriculture, 2024, 217: 108635.
[11] ZHANG X Q, CHEN Y, JIA J P, et al. Multi-view density-based field-road classification for agricultural machinery: DBSCAN and object detection[J]. Computers and Electronics in Agriculture, 2022, 200: 107263.
[12] ZHAI W X, MO G Z, XIAO Y Z, et al. GAN-BiLSTM network for field-road classification on imbalanced GNSS recordings[J]. Computers and Electronics in Agriculture, 2024, 216: 108457.
[13] CHEN Y, QUAN L, ZHANG X Q, et al. Field-road classification for GNSS recordings of agricultural machinery using pixel-level visual features[J]. Computers and Electronics in Agriculture, 2023, 210: 107937.
[14] 罗天长笑, 翟卫欣. 农机轨迹田路分类的局部方向中心性度量聚类算法[J]. 计算机工程与应用, 2024, 60(23): 303-313.
LUO T C X, ZHAI W X. Clustering algorithm with local direction centrality measurement for agricultural machinery trajectory field-road classification[J]. Computer Engineering and Applications, 2024, 60(23): 303-313.
[15] SOUZA V M A, VEIGA P S, RIBEIRO A G R. Visemble: a fast ensemble approach for time series classification with multiple visual representations[J]. Knowledge-Based Systems, 2025, 309: 112864.
[16] HOMENDA W, JASTRZ?BSKA A, PEDRYCZ W, et al. Time series classification with their image representation[J]. Neurocomputing, 2024, 573: 127214.
[17] 吕林涛, 王鹏, 李军怀, 等. 基于时间序列的趋势性分析及其预测算法研究[J]. 计算机工程与应用, 2004, 40(19): 172-174.
LV L T, WANG P, LI J H, et al. Research on the trend analysis and predictive algorithm based on time series[J]. Computer Engineering and Applications, 2004, 40(19): 172-174.
[18] 杨一鸣, 潘嵘, 潘嘉林, 等. 时间序列分类问题的算法比较[J]. 计算机学报, 2007, 30(8): 1259-1266.
YANG Y M, PAN R, PAN J L, et al. A comparative study on time series classification[J]. Chinese Journal of Computers, 2007, 30(8): 1259-1266.
[19] STRODTHOFF N, STRODTHOFF C. Detecting and interpreting myocardial infarction using fully convolutional neural networks[J]. Physiological Measurement, 2019, 40(1): 015001.
[20] COCHRANE J H. Time series for macroeconomics and finance[Z]. Chicago: University of Chicago, 1997.
[21] 刘绪颖, 卢文达, 王剑, 等. 融合多变量序列时空信息的事件早期识别方法[J]. 计算机工程与应用, 2023, 59(17): 116-122.
LIU X Y, LU W D, WANG J, et al. Early event detection based on multivariate spatial-temporal fusion[J]. Computer Engineering and Applications, 2023, 59(17): 116-122.
[22] ROY D P, YAN L. Robust Landsat-based crop time series modelling[J]. Remote Sensing of Environment, 2020, 238: 110810.
[23] 原继东, 王志海, 韩萌, 等. 基于逻辑Shapelets转换的时间序列分类算法[J]. 计算机学报, 2015, 38(7): 1448-1459.
YUAN J D, WANG Z H, HAN M, et al. A logical shapelets transformation for time series classification[J]. Chinese Journal of Computers, 2015, 38(7): 1448-1459.
[24] KARLSSON I, PAPAPETROU P, BOSTR?M H. Generalized random shapelet forests[J]. Data Mining and Knowledge Discovery, 2016, 30(5): 1053-1085.
[25] DU M S, WEI Y X, ZHENG X W, et al. Causal and local correlations based network for multivariate time series classification[J]. Neurocomputing, 2025, 634: 129884.
[26] KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116: 237-245.
[27] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
REN H, WANG X G. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6.
[28] 陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展[J]. 计算机工程与科学, 2021, 43(2): 370-380.
CHEN H H, WU G D, LI J X, et al. Research advances on deep learning recommendation based on attention mechanism[J]. Computer Engineering & Science, 2021, 43(2): 370-380.
[29] ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 27268-27286.
[30] QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 763-772.
[31] MA L Y, GAO T W, JIANG H T, et al. WaveIPT: joint attention and flow alignment in the wavelet domain for pose transfer[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 7181-7191.
[32] SOKOLOVA M, LAPALME G. A systematic analysis of performance measures for classification tasks[J]. Information Processing & Management, 2009, 45(4): 427-437.
[33] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi?level routing attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333.
[34] WU H P, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 22-31.
[35] HAN H Y, ZHANG M D, HOU M, et al. STGCN: a spatial-temporal aware graph learning method for POI recommendation[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 1052-1057.
[36] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018.
[37] ZHANG X X, FENG Z B, MU W S. Reformer: re-parameterized kernel lightweight transformer for grape disease segmentation[J]. Expert Systems with Applications, 2025, 265: 125757.
[38] SHU S Q, YU H W, YU J X. A novel video understanding network based on PoolFormer and transformer[C]//Proceedings of the 7th International Conference on Computer Science and Application Engineering. New York: ACM, 2023: 1-5.
[39] ILBERT R, ODONNAT A, FEOFANOV V, et al. SAMformer: unlocking the potential of transformers in time series forecasting with sharpness-aware minimization and channel-wise attention[J]. arXiv:2402.10198, 2024.
[40] SHAKER A, MAAZ M, RASHEED H, et al. SwiftFormer: efficient additive attention for transformer-based real-time mobile vision applications[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 17425-17436.
[41] DU J, ZHANG S, WU G, et al. Topology adaptive graph convolutional networks[J]. arXiv:1710.10370, 2017. |