计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 218-230.DOI: 10.3778/j.issn.1002-8331.2412-0294

• 图形图像处理 • 上一篇    下一篇

几何变化结合图像增强的航拍图像小目标检测算法

齐向明,李晓龙   

  1. 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125100
  • 出版日期:2025-09-15 发布日期:2025-09-15

Geometric Transformation Combined with Image Enhancement for Small Target Detection in Aerial Images

QI Xiangming, LI Xiaolong   

  1. School of Software, Liaoning Technical University, Huludao, Liaoning 125100, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 航拍图像小目标检测场景复杂,检测指标下降,提出几何变化结合图像增强的航拍图像小目标检测算法。以YOLOv8n为基线,DCNv2-CA-GEO并行提取空间特征和通道特征,动态调整卷积核和池化核,快速适应几何变化;SPD-OK-CSP调整通道维度,捕捉细粒度特征,跨阶段全局特征感知,多尺度特征学习,提高图像增强;Dysample动态调整差分采样点,优化上采样计算;Dyhead动态调整特征张量维度,整合上下文信息,优化检测头性能;Inner-Wise-MPD-IoU多视角增益分配策略,平衡不同质量样本特征,准确回归真实框,优化泛化能力。评价指标mAP@0.5、mAP@0.5:0.95、Precision、Recall,消融和对比实验在VisDrone2021上分别提升6.1、4.4、6.0、5.0个百分点,在LEVIR-Ship上分别提升3.4、2.2、3.1、5.3个百分点,优于基线算法和次优算法;泛化实验在VOC2007+2012上分别提升2.0、4.3、1.5、3.1个百分点,鲁棒性良好。

关键词: 航拍图像, 小目标检测, YOLOv8n, SPDConv, Omni-Kernel, DCNv2, Dyhead

Abstract: Aerial image small target detection is complex, leading to a decline in detection metrics. An algorithm combining geometric transformations and image enhancement is proposed. Using YOLOv8n as the baseline, DCNv2-CA-GEO extracts spatial and channel features in parallel, dynamically adjusting the convolutional and pooling kernels to quickly adapt to geometric changes. SPD-OK-CSP adjusts channel dimensions, capturing fine-grained features and enhancing image quality. Dysample optimizes upsampling, while Dyhead improves detection head performance. The Inner-Wise-MPD-IoU strategy balances sample features and optimizes generalization. Evaluated by mAP@0.5, mAP@0.5:0.95, Precision, and Recall, experiments on VisDrone2021 show improvements of 6.1 percentage points in mAP@0.5, 4.4 percentage points in mAP@0.5:0.95, 6.0 percentage points in Precision, and 5.0 percentage points in Recall. On LEVIR-Ship, the improvements are 3.4 percentage points in mAP@0.5, 2.2 percentage points in mAP@0.5:0.95, 3.1 percentage points in Precision, and 5.3 percentage points in Recall. Generalization tests on VOC2007+2012 demonstrate enhancements of 2.0 percentage points in mAP@0.5, 4.3 percentage points in mAP@0.5:0.95, 1.5 percentage points in Precision, and 3.1 percentage points in Recall, indicating good robustness.

Key words: aerial image, small target detection, YOLOv8n, SPDConv, Omni-Kernel, DCNv2, Dyhead