[1] 李辉, 王晓宇, 刘云, 等. 融合多尺度特征和多重注意力的水下目标检测[J]. 农业工程学报, 2022, 38(20): 129-139.
LI H, WANG X Y, LIU Y, et al. Detecting underwater objects using multi-scale features fusion and multiple attention[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 129-139.
[2] 于雨, 郭保琪, 初士博, 等. 基于深度学习的水下生物目标检测方法综述[J]. 山东科学, 2023, 36(6): 1-7.
YU Y, GUO B Q, CHU S B, et al. Survey of underwater biological object detection methods based on deep learning[J]. Shandong Science, 2023, 36(6): 1-7.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[4] GRISHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] LI X, SHANG M, QIN H W, et al. Fast accurate fish detection and recognition of underwater images with Fast R-CNN[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Piscataway: IEEE, 2015: 1-5.
[9] 杨婷, 高武奇, 王鹏, 等. 自动色阶与双向特征融合的水下目标检测算法[J]. 激光与光电子学进展, 2023, 60(6): 132-143.
YANG T, GAO W Q, WANG P, et al. Underwater target detection algorithm based on automatic color level and bidirectional feature fusion[J]. Laser & Optoelectronics Progress, 2023, 60(6): 132-143.
[10] LI W H, ZHANG Z K, JIN B, et al. A real-time fish target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2023, 11(3): 572.
[11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[12] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[13] 葛锡云, 张崇丙, 李晓伟, 等. 水下复杂环境高效鲁棒目标检测方法[J]. 舰船科学技术, 2023, 45(22): 148-154.
GE X Y, ZHANG C B, LI X W, et al. Research on efficient and robust object detection of complex underwater environments[J]. Ship Science and Technology, 2023, 45(22): 148-154.
[14] 梁秀满, 李然, 于海峰, 等. 改进YOLOv7的水下目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 89-99.
LIANG X M, LI R, YU H F, et al. Improved underwater object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(6): 89-99.
[15] ZHENG X L, ZOU J X, DU S, et al. Small target detection in refractive panorama surveillance based on improved YOLOv8[J]. Sensors, 2024, 24(3): 819.
[16] SHEN L Y, LANG B H, SONG Z X. DS-YOLOv8-based object detection method for remote sensing images[J]. IEEE Access, 2023, 11: 125122-125137.
[17] WANG X Q, GAO H B, JIA Z M, et al. BL-YOLOv8: an improved road defect detection model based on YOLOv8[J]. Sensors, 2023, 23(20): 8361.
[18] MA M Y, PANG H L. SP-YOLOv8s: an improved YOLOv8s model for remote sensing image tiny object detection[J]. Applied Sciences, 2023, 13(14): 8161.
[19] LI Y T, FAN Q S, HUANG H S, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[20] GRABINSKI J, KEUPER J, KEUPER M. Aliasing and adversarial robust generalization of CNNs[J]. Machine Learning, 2022, 111(11): 3925-3951.
[21] WILLIAMS T, LI R. Wavelet pooling for convolutional neural networks[C]//Proceedings of the International Conference on Learning Representations, 2018.
[22] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[23] SUN H, LI S Y, ZHENG X T, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 82-96.
[24] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[25] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
[26] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[27] LEE Y, HWANG J W, LEE S, et al. An energy and GPU-computation efficient backbone network for real?time object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 752-760.
[28] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312. 17663, 2023.
[29] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3559-3568.
[30] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[31] ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the International Conference on Machine Learning, 2019: 7324-7334.
[32] NING J, SPRATLING M. The importance of anti-aliasing in tiny object detection[C]//Proceedings of the Asian Conference on Machine Learning, 2024: 975-990.
[33] ZHANG M H, XU S B, SONG W, et al. Lightweight underwater object detection based on YOLO v4 and multi-scale attentional feature fusion[J]. Remote Sensing, 2021, 13(22): 4706.
[34] WANG J, QI S M, WANG C, et al. B-YOLOX-S: a lightweight method for underwater object detection based on data augmentation and multiscale feature fusion[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1764.
[35] CHEN L, YANG Y Y, WANG Z H, et al. Underwater target detection lightweight algorithm based on multi-scale feature fusion[J]. Journal of Marine Science and Engineering, 2023, 11(2): 320.
[36] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 62.
[37] WANG J, XU C, YANG W, et al. A normalized Gaussian wasserstein distance for tiny object detection[J] arXiv:2110. 13389, 2021.
[38] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[39] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
[40] LIANG X T, SONG P H. Excavating RoI attention for underwater object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 2651-2655.
[41] CHEN L, ZHOU F, WANG S, et al. SWIPENET: object detection in noisy underwater images[J]. arXiv:2010.10006, 2020.
[42] LIN W H, ZHONG J X, LIU S, et al. ROIMIX: proposal-fusion among multiple images for underwater object detection[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2588-2592. |