[1] 姚锡凡, 马南峰, 张存吉, 等. 以人为本的智能制造: 演进与展望[J]. 机械工程学报, 2022, 58(18): 2-15.
YAO X F, MA N F, ZHANG C J, et al. Human-centric smart manufacturing: evolution and outlook[J]. Journal of Mechanical Engineering, 2022, 58(18): 2-15.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[3] BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9156-9165.
[4] 李晓筱, 胡晓光, 王梓强, 等. 基于深度学习的实例分割研究进展[J]. 计算机工程与应用, 2021, 57(9): 60-67.
LI X X, HU X G, WANG Z Q, et al. Survey of instance segmentation based on deep learning[J]. Computer Engineering and Applications, 2021, 57(9): 60-67.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[7] ZHENG Q H, TIAN X Y, YU Z G, et al. Robust automatic modulation classification using asymmetric trilinear attention net with noisy activation function[J]. Engineering Applications of Artificial Intelligence, 2025, 141: 109861.
[8] 曹士杰, 张竹林. 基于改进YOLO v5的矿山石块实例分割算法[J]. 兰州工业学院学报, 2023, 30(6): 19-25.
CAO S J, ZHANG Z L. A study on mine stone instance segmentation algorithm based on improved YOLO v5[J]. Journal of Lanzhou Institute of Technology, 2023, 30(6): 19-25.
[9] 张纵驰, 王华伟, 周长威. MSA-YOLO: 面向蒙皮表面缺陷的实时分割算法[J]. 航空计算技术, 2024, 54(5): 64-68.
ZHANG Z C, WANG H W, ZHOU C W. MSA- YOLO: real- time segmentation algorithm for skin surface defects[J]. Aeronautical Computing Technique, 2024, 54(5): 64-68.
[10] 谭旭, 赵骥. 改进YOLOv8的汽车表面伤损实例分割模型[J]. 计算机工程与应用, 2024, 60(14): 197-208.
TAN X, ZHAO J. Enhancing YOLOv8 for improved instance segmentation of automotive surface damage[J]. Computer Engineering and Applications, 2024, 60(14): 197-208.
[11] 梁秀英, 贾学镇, 何磊, 等. 基于YOLO v8n-seg和改进Strongsort的多目标小鼠跟踪方法[J]. 农业机械学报, 2024, 55(2): 295-305.
LIANG X Y, JIA X Z, HE L, et al. Multi-object mice tracking based on YOLO v8n-seg and improved strongsort[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 295-305.
[12] 王福顺, 王旺, 孙小华, 等. 基于改进YOLO v8n-seg的羊只实例分割方法[J]. 农业机械学报, 2024, 55(8): 322-332.
WANG F S, WANG W, SUN X H, et al. Sheep instance segmentation method based on improved YOLO v8n-seg[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 322-332.
[13] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[14] 王磊, 张斌, 吴奇鸿. RCSA-YOLO: 改进YOLOv8的SAR舰船实例分割[J]. 计算机工程与应用, 2024, 60(18): 103-113.
WANG L, ZHANG B, WU Q H. RCSA-YOLO: improved SAR ship instance segmentation of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(18): 103-113.
[15] 吴永军, 崔灿, 何永福. 基于语义增广与YOLOv8的钢轨表面缺陷检测方法[J]. 铁道科学与工程学报, 2024, 21(9): 3864-3875.
WU Y J, CUI C, HE Y F. Rail surface defect detection based on semantic augmentation and YOLOv8[J]. Journal of Railway Science and Engineering, 2024, 21(9): 3864-3875.
[16] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small object detection based on attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 90-101.
[17] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[18] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[19] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[20] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6004-6014.
[21] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[22] XU G P, LIAO W T, ZHANG X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819.
[23] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022.
[24] HUANG H J, CHEN Z G, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784.
[25] ZHANG J, DING R W, BAN M J, et al. FDSNeT: an accurate real-time surface defect segmentation network[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 3803-3807.
[26] CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: improved visual explanations for deep convolutional networks[J]. arXiv:1710.11063, 2017. |