[1] LIAN J, YIN Y H, LI L H, et al. Small object detection in traffic scenes based on attention feature fusion[J]. Sensors, 2021, 21(9): 3031.
[2] LIU H S, FAN K G, OUYANG Q H, et al. Real-time small drones detection based on pruned YOLOv4[J]. Sensors, 2021, 21(10): 3374.
[3] BENJUMEA A, TEETI I, CUZZOLIN F, et al. YOLO-Z: improving small object detection in YOLOv5 for autonomous vehicles[J]. arXiv:2112.11798, 2021.
[4] 吴慧, 徐学红, 冯晓娟, 等. 全球视角下的中国生物多样性监测进展与展望[J]. 生物多样性, 2022, 30(10): 196-210.
WU H, XU X H, FENG X J, et al. Progress and prospect of China biodiversity monitoring from a global perspective[J]. Biodiversity Science, 2022, 30(10): 196-210.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[8] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[15] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[16] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038.
[17] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[18] SINGH B, NAJIBI M, DAVIS L S, et al. SNIPER[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9333-9343.
[19] YANG C, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13658-13667.
[20] BAI Y C, ZHANG Y Q, DING M L, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 206-221.
[21] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015.
[22] CHEN D F, MEI J P, ZHANG Y, et al.Cross-layer distillation with semantic calibration[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(8): 7028-7036.
[23] LIU D Q, LI W T, ZHOU W, et al. Semantic stage-wise learning for knowledge distillation[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 816-821.
[24] UNEL F O, OZKALAYCI B O, CIGLA C. The power of tiling for small object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 582-591.
[25] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[J]. arXiv:1902.07296, 2019.
[26] CHEN C R, ZHANG Y, LV Q X, et al. RRNet: a hybrid detector for object detection in drone-captured images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 100-108.
[27] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186.
[28] GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1159-1167.
[29] 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48.
[30] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[31] GANESH P, CHEN Y, YANG Y, et al. YOLO-ReT: towards high accuracy real-time object detection on edge GPUs[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1311-1321.
[32] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[33] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[34] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[35] ZHANG J, ZOU X, KUANG L D, et al. CCTSDB 2021: a more comprehensive traffic sign detection benchmark[J]. Human-centric Computing and Information Sciences, 2022. DOI:10.22967/HCIS.2022.12.023.
[36] CHENG Y W, ZHU J N, JIANG M X, et al. FloW: a dataset and benchmark for floating waste detection in inland waters[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10933-10942.
[37] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[38] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[39] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[40] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[41] SUNKARA R, LUO T. No more strided convolutions or pooling: a new cnn building block for low-resolution images and small objects[C]//Proceedings of the 2023 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[42] 许晓阳, 高重阳. 改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83.
XU X Y, GAO C Y. Improved YOLOv7-tiny lightweight infrared vehicle target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83.
[43] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones[J]. Computer Engineering and Applications, 2024, 60(9): 142-150.
[44] 李安达, 吴瑞明, 李旭东. 改进YOLOv7的小目标检测算法研究[J]. 计算机工程与应用, 2024, 60(1): 122-134.
LI A D, WU R M, LI X D. Research on improving YOLOv7’s small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 122-134.
[45] LIANG S Y, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360. |