[1] 赵景, 蔡万伦, 沈栎阳, 等. 水稻害虫绿色防控技术研究的发展现状及展望[J]. 华中农业大学学报, 2022, 41(1): 92-104.
ZHAO J, CAI W L, SHEN L Y, et al. Current situation and prospect of green rice pest control technology[J]. Journal of Huazhong Agricultural University, 2022, 41(1): 92-104.
[2] 卓富彦, 陈学新, 夏玉先, 等. 2013—2022年我国水稻病虫害发生特点与绿色防控技术集成[J]. 中国生物防治学报, 2024, 40(5): 1207-1213.
ZHUO F Y, CHEN X X, XIA Y X, et al. The occurrence characteristics of rice diseases and insect pests and the integration of green control technology in China from 2013 to 2022[J]. Chinese Journal of Biological Control, 2024, 40(5): 1207-1213.
[3] 巨志勇, 易成, 周重臣, 等. YOLO-Rice: 一种基于YOLOv5的水稻虫害检测[J]. 控制工程, 2024, 31(12): 2196-2205.
JU Z Y, YI C, ZHOU Z C, et al. YOLO-Rice: a rice pest detection based on YOLOv5[J]. Control Engineering of China, 2024, 31(12): 2196-2205.
[4] 桂余鹏, 胡蓉华, 崔艳荣, 等. 基于轻量化YOLO v8-Rice的水稻虫害检测方法[J]. 江苏农业科学, 2024, 52(20): 277-284.
GUI Y P, HU R H, CUI Y R, et al. A rice pest detection method based on lightweight YOLO v8-Rice[J]. Jiangsu Agricultural Sciences, 2024, 52(20): 277-284.
[5] 李鑫, 南新元. 基于改进YOLOv7-tiny算法的多种类不均衡样本水稻害虫检测[J]. 山东农业科学, 2024, 56(6): 133-142.
LI X, NAN X Y. Detection of rice pests in multi-species unbalanced samples based on improved YOLOv7-tiny algorithm[J]. Shandong Agricultural Sciences, 2024, 56(6): 133-142.
[6] 李滨, 樊健. 基于YOLO v5的水稻害虫分类[J]. 江苏农业科学, 2024, 52(2): 175-182.
LI B, FAN J. Classification of rice pests based on YOLO v5[J]. Jiangsu Agricultural Sciences, 2024, 52(2): 175-182.
[7] 梁勇, 邱荣洲, 李志鹏, 等. 基于YOLO v5和多源数据集的水稻主要害虫识别方法[J]. 农业机械学报, 2022, 53(7): 250-258.
LIANG Y, QIU R Z, LI Z P, et al. Identification method of major rice pests based on YOLO v5 and multi-source datasets[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 250-258.
[8] 魏志慧, 张聪, 成泞伸, 等. 一种水稻害虫的小目标检测方法研究[J]. 江苏农业科学, 2024, 52(9): 232-241.
WEI Z H, ZHANG C, CHENG N S, et al. Study on a small target detection method for rice pests[J]. Jiangsu Agricultural Sciences, 2024, 52(9): 232-241.
[9] 王泰华, 郭亚州, 张家乐, 等. 基于改进YOLO v5s的水稻害虫识别研究[J]. 农业机械学报, 2024, 55(11): 39-48.
WANG T H, GUO Y Z, ZHANG J L, et al. Rice pest identification based on improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(11): 39-48.
[10] 李龙, 李梦霞, 李志良. 基于改进YOLO v8的水稻害虫识别方法[J]. 江苏农业科学, 2024, 52(20): 209-219.
LI L, LI M X, LI Z L. Rice pest identification method based on improved YOLO v8[J]. Jiangsu Agricultural Sciences, 2024, 52(20): 209-219.
[11] CAO L, WANG Q, LUO Y H, et al. YOLO-TSL: a lightweight target detection algorithm for UAV infrared images based on Triplet attention and Slim-neck[J]. Infrared Physics & Technology, 2024, 141: 105487.
[12] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[13] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[14] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[15] 童小钟, 魏俊宇, 苏绍璟, 等. 融合注意力和多尺度特征的典型水面小目标检测[J]. 仪器仪表学报, 2023, 44(1): 212-222.
TONG X Z, WEI J Y, SU S J, et al. Typical small target detection on water surfaces fusing attention and multi-scale features[J]. Chinese Journal of Scientific Instrument, 2023, 44(1): 212-222.
[16] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[17] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773.
[18] LIU W, LU H, FU H, et al. Learning to upsample by learning to sample[J]. arXiv:2308.15085, 2023.
[19] XU X , JIANG Y , CHEN W , et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211.15444, 2022.
[20] ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118.
[21] 赵庆辉, 赖耀平, 官敬超, 等. 面向小目标检测的像素重排与特征重排算法[J/OL]. 计算机工程与应用, 2024: 1-14(2024-08-19)[2025-01-26]. https://kns.cnki.net/kcms/detail/11.2127.TP.20240819.1010.004.html.
ZHAO Q H, LAI Y P, GUAN J C, et al. Pixel rearrangement and feature rearrangement algorithm for small target detection[J/OL]. Computer Engineering and Applications, 2024: 1-14(2024-08-19) [2025-01-26]. https://kns.cnki.net/kcms/detail/11.2127.TP.20240819.1010.004.html.
[22] YANG Q P, CHENG M L, ZHOU W M, et al. IncepText: a new inception-text module with deformable PSROI pooling for multi-oriented scene text detection[J]. arXiv:1805.01167, 2018.
[23] LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019. |