计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 113-123.DOI: 10.3778/j.issn.1002-8331.2501-0120

• 目标检测专题 • 上一篇    下一篇

QMDF-YOLO11:复杂场景下水稻害虫检测算法

熊干,陈慈发,张上   

  1. 三峡大学 计算机与信息学院,湖北 宜昌 443000
  • 出版日期:2025-07-01 发布日期:2025-06-30

QMDF-YOLO11: Rice Pests Detection Algorithm in Complex Scenarios

XIONG Gan, CHEN Cifa, ZHANG Shang   

  1. School of Computer and Information Sciences, China Three Gorges University, Yichang, Hubei 443000, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 在复杂场景下的水稻害虫检测中,传统YOLOv11模型面临小目标识别能力不足和多尺度特征融合效果不佳的挑战。为解决这些问题,提出了一种基于YOLOv11的改进检测模型QMDF-YOLO11。提出了全新的特征融合网络(QS-RepGFPN),替换原模型的neck结构,通过多层次特征的高效融合,显著增强了对小目标的感知能力和检测效果。主干网络引入调制可变形卷积(MDConv),增强了网络对变形目标的鲁棒性和表达能力,同时采用动态上采样(DySample)替代传统上采样方法,提高了多尺度特征融合过程中的插值精度。此外,结合QS-RepGFPN结构创新设计了四检测头——QASFFHead(quadruple adaptive spatial fusion head),进一步优化了多尺度特征的利用和融合,提升了模型在不同尺度目标检测中的精度和效率。实验结果表明,改进后的模型在RicePests数据集上的mAP@0.5达到94.57%(提升了5.26个百分点),P(精度)和mAP@0.5:0.95分别提升了5.89个百分点和7.46个百分点,在复杂背景和密集小目标场景中表现尤为突出。同时,模型参数量和计算量的增加保持在合理范围内,确保了高效的推理速度。实验结果表明改进模型适用于资源有限的农业监测平台,具备实时目标检测的潜力,为智慧农业的进一步发展提供参考。

关键词: 水稻害虫检测, 小目标检测, 多尺度特征融合, YOLOv11, 智慧农业

Abstract: In the context of rice pest detection in complex environments, the traditional YOLOv11 model faces challenges of insufficient small target recognition capability and inadequate multi-scale feature fusion. To address these issues, an improved detection model based on YOLOv11, named QMDF-YOLO11, is proposed. Firstly, a novel feature fusion network (QS-RepGFPN) is proposed to replace the neck structure of the original model, achieving efficient fusion of multi-level features and significantly enhancing the perception and detection capabilities for small targets. Secondly, the backbone network incorporates modulated deformable convolutions (MDConv), enhancing the network’s robustness and expressive power for deformed targets, while adopting the DySample dynamic sampling module to replace traditional upsampling methods, improving the interpolation accuracy in the multi-scale feature fusion process. Additionally, by combining the QS-RepGFPN structure, a novel four detection head, QASFFHead (quadruple adaptive spatial fusion head), is innovatively designed, further optimizing the utilization and fusion of multi-scale features and enhancing the precision and efficiency of the model in detecting targets of different scales. Experimental results show that the improved model achieves an mAP@0.5 of 94.57% on the RicePests dataset, an increase of 5.26 percentage points, with precision (P) and mAP@0.5:0.95 improved by 5.89 percentage points and 7.46 percentage points, respectively, particularly outstanding in complex backgrounds and scenarios with dense small targets. Meanwhile, the increase in model parameters and computational costs is kept within a reasonable range, ensuring efficient inference speed. The experimental results indicate that the improved model is suitable for resource-constrained agricultural monitoring platforms, real-time target detection potential, providing references for the further development of smart agriculture.

Key words: rice pest detection, small object detection, multi-scale feature fusion, YOLOv11, smart agriculture