[1] 王泉东, 杨岳, 罗意平, 等. 铁路侵限异物检测方法综述[J]. 铁道科学与工程学报, 2019, 16(12): 3152-3159.
WANG Q D, YANG Y, LUO Y P, et al. Review on railway intrusion detection methods[J]. Journal of Railway Science and Engineering, 2019, 16(12): 3152-3159.
[2] MIRZAEI S M, RADMEHR A, HOLTON C, et al. In-motion, non-contact detection of ties and ballasts on railroad tracks[J]. Applied Sciences, 2024, 14(19): 8804.
[3] JIA X H, JI C, ZHANG F, et al. AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions[J]. Journal of Real-Time Image Processing, 2024, 21(5): 172.
[4] 李毅, 徐慧英, 朱信忠, 等. TFD-YOLO: 基于YOLOv10改进的输电线异物检测算法[J/OL]. 浙江师范大学学报(自然科学版), 2024: 1-10[2025-02-05]. https://doi_org.jxust.opac.vip/10.16218/j.issn.1001-5051.2025.034.
LI Y, XU H Y, ZHU X Z, et al. TFD-YOLO: an improved algorithm for foreign object detection on transmission lines based on YOLOv10[J/OL]. Journal of Zhejiang Normal University (Natural Sciences), 2024: 1-10[2025-02-05]. https://doi_org.jxust.opac.vip/10.16218/j.issn.1001-5051.2025.034.
[5] NIU Z X, ZHANG J P, LI Z, et al. Automatic detection and predictive geolocation of foreign object debris on airport runway[J]. IEEE Access, 2024, 12: 133748-133763.
[6] 程擎, 叶紫, 何汶键, 等. 基于YOLOv7的机场跑道异物检测算法[J]. 电子测量技术, 2024, 47(16): 120-129.
CHENG Q, YE Z, HE W J, et al. Foreign object debris detection based on YOLOv7 algorithm[J]. Electronic Measurement Technology, 2024, 47(16): 120-129.
[7] LI M, LU C W, YAN X S, et al. Enhanced detection of foreign objects on molybdenum conveyor belt based on anchor-free image recognition[J]. Applied Sciences, 2024, 14(16): 7061.
[8] 李宗霖, 王广祥, 张立亚, 等. 基于改进YOLOv8n的煤矿带式输送异物检测研究[J]. 矿业安全与环保, 2024, 51(4): 41-48.
LI Z L, WANG G X, ZHANG L Y, et al. Research on the detection of foreign objects in coal mine belt conveying based on improved YOLOv8n[J]. Mining Safety & Environmental Protection, 2024, 51(4): 41-48.
[9] ZHAO H Y, JIN J, LIU Y, et al. FSDF: a high-performance fire detection framework[J]. Expert Systems with Applications, 2024, 238: 121665.
[10] 段志伟, 赵师震, 闫浩. 基于改进YOLOv8的火焰检测算法[J/OL]. 自动化技术与应用, 2024: 1-10[2025-02-05]. https://http-kns_cnki_net.jxust.opac.vip/kcms/detail/23.1474.tp.20241230.
0956.085.html.
DUAN Z W, ZHAO S Z, YAN H. Flame detection algorithm based on improved YOLOv8[J/OL]. Techniques of Automation and Applications, 2024: 1-10[2025-02-05]. https://http-kns_cnki_net.jxust.opac.vip/kcms/detail/23.1474.tp.20241230.
0956.085. html.
[11] LI Y D, DONG H, LI H G, et al. Multi-block SSD based on small object detection for UAV railway scene surveillance[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1747-1755.
[12] 徐岩, 陶慧青, 虎丽丽. 基于Faster R-CNN网络模型的铁路异物侵限检测算法研究[J]. 铁道学报, 2020, 42(5): 91-98.
XU Y, TAO H Q, HU L L. Railway foreign body intrusion detection based on Faster R-CNN network model[J]. Journal of the China Railway Society, 2020, 42(5): 91-98.
[13] 刘力, 苟军年. 基于YOLO v4的铁道侵限障碍物检测方法研究[J]. 铁道科学与工程学报, 2022, 19(2): 528-536.
LIU L, GOU J N. Research on detection method of railway intrusion obstacles based on YOLO v4[J]. Journal of Railway Science and Engineering, 2022, 19(2): 528-536.
[14] 胡昊, 史天运, 关则彬. 融合混合注意力和改进YoloX的铁路落石检测方法[J]. 电子测量技术, 2022, 45(20): 110-116.
HU H, SHI T Y, GUAN Z B. A railway rockfall detection method incorporating mixed attention and improved YoloX[J]. Electronic Measurement Technology, 2022, 45(20): 110-116.
[15] 陈永, 王镇, 卢晨涛, 等. 红外弱光下多特征融合与注意力增强铁路异物检测[J]. 北京航空航天大学学报, 2023, 49(8): 1884-1895.
CHEN Y, WANG Z, LU C T, et al. Detection of railway object intrusion under infrared low light based on multi-feature and attention enhancement network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 1884-1895.
[16] SUN Y M, XIE Z Y, QIN Y, et al. Image detection of foreign body intrusion in railway perimeter based on dual recognition method[C]//Proceedings of the European Workshop on Structural Health Monitoring. Cham: Springer, 2021: 645-654.
[17] 李明, 何志奇, 党青霞, 等. 面向户外导盲场景的道路目标检测算法[J]. 计算机工程与应用, 2025, 61(9): 242-254.
LI M, HE Z Q, DANG Q X, et al. Road object detection algorithm for outdoor blind navigation scenarios[J]. Computer Engineering and Applications, 2025, 61(9): 242-254.
[18] SHARMA N, GUPTA S, RESHAN M S A, et al. EfficientNetB0 cum FPN based semantic segmentation of gastrointestinal tract organs in MRI scans[J]. Diagnostics, 2023, 13(14): 2399.
[19] SONG Y Z, WANG J F, GE Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610.
[20] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[21] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[22] LIU J, JING D L, ZHANG H J, et al. SRFAD-net: scale-robust feature aggregation and diffusion network for object detection in remote sensing images[J]. Electronics, 2024, 13(12): 2358.
[23] 张婷, 张兴忠, 王慧民, 等. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336.
ZHANG T, ZHANG X Z, WANG H M, et al. 3D object detection in substation scene based on graph neural network[J]. Computer Engineering and Applications, 2023, 59(9): 329-336.
[24] KHAN Z Y, NIU Z D. CNN with depthwise separable convolutions and combined kernels for rating prediction[J]. Expert Systems with Applications, 2021, 170: 114528.
[25] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[26] 杨国亮, 盛杨杨, 洪鑫芳, 等. 改进YOLOv8n的果园番茄目标检测算法[J]. 计算机工程与应用, 2024, 60(23): 238-248.
YANG G L, SHENG Y Y, HONG X F, et al. Improved YOLOv8n orchard tomato target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(23): 238-248.
[27] ZHU J, HU T, ZHENG L H, et al. YOLOv8-C2f-Faster-EMA: an improved underwater trash detection model based on YOLOv8[J]. Sensors, 2024, 24(8): 2483.
[28] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small object detection based on attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 90-101.
[29] MA W P, LI Y T, ZHU H, et al. A multi-scale progressive collaborative attention network for remote sensing fusion classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 3897-3911.
[30] CHEN L W, GU L, ZHENG D Z, et al. Frequency-adaptive dilated convolution for semantic segmentation[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 3414-3425.
[31] LIANG Y Y, COUDEVYLLE J R, BENISTY H, et al. Strong laser emission modulation by coherent perfect absorption inside complex-coupled distributed feedback laser diodes [J]. Small, 2025, 21(1): 2570003.
[32] LI B, PENG F G, HUI T R, et al. RGB-T tracking with template-bridged search interaction and target-preserved template updating[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(1): 634-649.
[33] 蒋经纬, 吉月辉, 刘俊杰, 等. 基于轻量级CNN的视觉SLAM快速回环检测算法[J]. 计算机仿真, 2024, 41(8): 182-188.
JIANG J W, JI Y H, LIU J J, et al. Visual slam fast loop detection algorithm based on lightweight CNN[J]. Computer Simulation, 2024, 41(8): 182-188.
[34] WANG J Q, SUN Y W, LIN Y, et al. Lightweight substation equipment defect detection algorithm for small targets[J]. Sensors, 2024, 24(18): 5914.
[35] 杨占山, 张瀛, 杜弘志, 等. 基于融合差分卷积的受电弓安全触发目标实时检测定位方法[J]. 激光与光电子学进展, 2024, 61(18): 1-9.
YANG Z S, ZHANG Y, DU H Z, et al. Pantograph safe trigger target real-time detection and localization method based on fused differential convolutional[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1-9.
[36] YU Z T, ZHAO C X, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5294-5304.
[37] WU G N, WU Q H. Enhancing steel surface defect detection: a hyper-YOLO approach with ghost modules and hyper FPN[J]. IAENG International Journal of Computer Science, 2024, 51(9): 1321-1330.
[38] WANG Z Y, LI C, XU H Y, et al. Mamba YOLO: SSMs-based YOLO for object detection[J]. arXiv:2406.05835, 2024. |