[1] COSTELLO C, CAO L, GELCICH S, et al. The future of food from the sea[J]. Nature, 2020, 588: 95-100.
[2] SANTOS J D, VITORINO I, REYES F, et al. From ocean to medicine: pharmaceutical applications of metabolites from marine bacteria[J]. Antibiotics, 2020, 9: 455.
[3] CUI S, WANG Y, WANG S, et al. Real-time perception and positioning for creature picking of an underwater vehicle[J]. IEEE Transaction on Vehicular Technology, 2020, 69: 3783-3792.
[4] ZHANG H, ZHANG S, WANG Y, et al. Subsea pipeline leak inspection by autonomous underwater vehicle[J]. Applied Ocean Research, 2021, 107: 102321.
[5] WILLER D F, ROBINSON J P W, PATTERSON G T, et al. Maximising sustainable nutrient production from coupled fisheries-aquaculture systems[J]. PLoS Sustainability and Transformation, 2022, 1(3): e0000005.
[6] GONZALEZ F J, MEDIALDEA T, SCHIELLERUP H, et al. Mindesea-exploring seabed mineral deposits in European seas, metallogeny and geological potential for stategic and critical raw materials[J]. Geological Society of London Special Publications, 2023, 526: 289-317.
[7] JIAN M, LIU X, LUO H, et al. Underwater image processing and analysis: a review[J]. Signal Process. Image Commun, 2021, 91: 116088.
[8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[14] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:1606.08415, 2021.
[15] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag of freebies sets new state of the art for real time object detectors[J]. arXiv:2207.02696, 2022.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42: 318-327.
[18] WANG J, LI Y, WANG J, et al. An underwater dense small object detection model based on YOLOv5-CFDSDSE[J]. Electronics, 2023, 12: 3231.
[19] 梁秀满, 李然, 于海峰, 等. 改进YOLOv7的水下目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 89-99.
LIANG X, LI R, YU H ,F et al. Improved underwater object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(6): 89-99.
[20] YANG Q, MENG H, GAO Y, et al. A real-time object detection method for underwater complex environments based on fasterNet-YOLOv7[J]. Journal Of Real-time Image Processing, 2023, 21(1): 1-14.
[21] LIU Y, SHAO Z. HOFFMANN, N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[22] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, 2018: 8759-8768.
[23] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007- 3016.
[24] LI K, WANG Y, HU Z. Improved YOLOv7 for small object detection algorithm based on attention and dynamic convolution[J]. Applied?Sciences, 2023, 13: 9316.
[25] PARK J, et al. BAM: bottleneck attention module[J]. arXiv. 1807.06514. 2018.
[26] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[27] HE J, WANG Y, et al. A lightweight road crack detection algorithm based on improved YOLOv7 model[J]. Signal, Image and Video Processing, 2024, 18: 847-860.
[28] SAHOO A, DWIVEDY S K, ROBI P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145-160.
[29] CHEN X, YUAN M, YANG Q, et al. Underwater-ycc: underwater target detection optimization algorithm based on YOLOv7[J]. Journal of Marine Science and Engineering, 2023, 11(5): 995.
[30] LIU K, SUN Q, SUN D, et al. Underwater target detection based on improved YOLOv7[J]. Journal of Marine Science and Engineering, 2023, 11: 677. |