[1] 殷旭鹏, 赵兴强. YOLOv11-MAS: 一种高效的PCB缺陷检测算法[J]. 计算机工程与应用, 2025, 61(17): 102-111.
YIN X P, ZHAO X Q. YOLOv11-MAS: Efficient PCB defect detection algorithm[J]. Computer Engineering and Applications, 2025, 61(17): 102-111.
[2] 查健, 陈先中, 王文财, 等. 基于改进的YOLOv5s刨花板表面小目标缺陷检测算法[J]. 计算机工程与应用, 2024, 60(17): 158-166.
ZHA J, CHEN X Z, WANG W C, et al. Small defect detection algorithm of particle board surface based on improved YOLOv5s[J]. Computer Engineering and Applications, 2024, 60(17): 158-166.
[3] 李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38(1): 60-70.
LI B, QIU L Y, ZHU X S, et al. Insulator defect detection based on multi-scale feature fusion[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 60-70.
[4] 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292.
LI W G, YE X, ZHAO Y T, et al. Strip steel surface defect detection based on improved YOLOv3 algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292.
[5] 罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. SCIENTIA SINICA Informationis, 2022, 52(6): 1002-1039.
[6] KINGMA D P, WELLING M. Auto?encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations, 2014: 1-9.
[7] GOODFELLOW I, POUGET A J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
[8] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851.
[9] ZHANG H, WANG Z, ZENG D, et al. DiffusionAD: norm-guided one-step denoising diffusion for anomaly detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(8): 7140-7152.
[10] MOUSAKHAN A, BROX T, TAYYUB J. Anomaly detection with conditioned denoising diffusion models[J]. arXiv: 2305.15956, 2023.
[11] 戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的 Faster R-CNN 航拍输电线路螺栓缺陷检测[J]. 中国图象图形学报, 2021, 26(11) : 2594- 2604.
QI Y C, WU X L, ZHAO Z B, et al. Bolt defect detection for aerial transmission lines using faster R-CNN with an embedded dual attention mechanism[J]. Journal of Image and Graphics, 2021, 26(11): 2594-2604.
[12] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308.
[13] CAO Y K, WAN Q, SHEN W M, et al. Informative knowledge distillation for image anomaly segmentation[J]. Knowledge-Based Systems, 2022, 248: 108846.
[14] DENG H Q, LI X Y. Anomaly detection via reverse distillation from one-class embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736.
[15] ZHANG X, LI S Y, LI X, et al. DeSTSeg: segmentation guided denoising student-teacher for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3914-3923.
[16] ZAVRTANIK V, KRISTAN M, SKOCAJ D. DRAEM—A discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319.
[17] CHIU L L, LAI S H. Self-supervised normalizing flows for image anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2023: 2927-2936.
[18] JIANG J L, ZHU J L, BILAL M, et al. Masked swin transformer unet for industrial anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 2200-2209.
[19] LIU Z K, ZHOU Y M, XU Y S, et al. SimpleNet: a simple network for image anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20402-20411.
[20] TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520. |