
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 1-18.DOI: 10.3778/j.issn.1002-8331.2508-0156
程泊宣,李明轩,张正宇
出版日期:2025-10-15
发布日期:2025-10-15
CHENG Boxuan, LI Mingxuan, ZHANG Zhengyu
Online:2025-10-15
Published:2025-10-15
摘要: 扩散模型是一种通过前向扩散和反向去噪实现内容生成的模型。其在目标检测、医学图像、自然语言处理和生成式图像等领域得到了广泛的应用。随着应用范围扩大,鉴定生成图像的真实性成为了学术界研究的热点。但是,扩散模型生成式图像技术被用来制作虚假新闻图片或色情图片传播谣言等,其被广泛应用在灰色地带甚至违法犯罪领域。近年来,大量的研究工作用以解决扩散模型生成图像的真实性问题,然而,现有工作缺乏对其生成图像检测的系统性调研和梳理。为了填补上述空白,现对扩散模型生成式图像检测技术的研究发展进行了全面的分析和总结。概述了十种扩散模型生成图像技术的整体流程和相关步骤,研究扩散模型与其他的图像生成模型优缺点;系统性梳理出五类扩散模型检测技术,讨论了检测技术的应用和挑战,将五类检测技术对比分析;总结了二十二种扩散模型数据集,并将所有数据集进行系统性对比;根据扩散模型生成式图像检测技术的局限性,探讨了检测技术在今后的发展方向。
程泊宣, 李明轩, 张正宇. 扩散模型生成式图像检测技术研究综述[J]. 计算机工程与应用, 2025, 61(20): 1-18.
CHENG Boxuan, LI Mingxuan, ZHANG Zhengyu. Review of Generative Image Detection Technology Based on Diffusion[J]. Computer Engineering and Applications, 2025, 61(20): 1-18.
| [1] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10674-10685. [2] ZHOU S C, YANG P Q, WANG J Y, et al. Upscale-A-video: temporal-consistent diffusion model for real-world video super-resolution[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 2535-2545. [3] CHEN B, ZHANG Z Y, LI W Q, et al. Invertible diffusion models for compressed sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(5): 3992-4006. [4] HUANG X, WANG J, XIA Q, et al. V2X-R: cooperative LiDAR-4D radar fusion for 3D object detection with denoising diffusion[J]. arXiv:2411.08402, 2024. [5] WEBER E, HOLYNSKI A, JAMPANI V, et al. NeRFiller: completing scenes via generative 3D inpainting[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 20731-20741. [6] HU P, WANG R, ZHENG X, et al. Wavelet diffusion neural operator[J]. arXiv:2412.04833, 2024. [7] LE D T, SHI H, CAI J, et al. DifFUSER: diffusion model for robust multi-sensor fusion in 3D object detection and BEV segmentation[J]. arXiv:2404.04629, 2024. [8] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763. [9] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [10] DURALL R, KEUPER M, PFREUNDT F J, et al. Unmasking deepfakes with simple features[J]. arXiv:1911.00686, 2019. [11] FRANK J, EISENHOFER T, SCH?NHERR L, et al. Leveraging frequency analysis for deep fake image recognition[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 3247-3258. [12] QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103. [13] ZHANG X, KARAMAN S, CHANG S F. Detecting and simu-lating artifacts in GAN fake images[C]//Proceedings of the 2019 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2019: 1-6. [14] YU N, DAVIS L, FRITZ M. Attributing fake images to GANs: learning and analyzing GAN fingerprints[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 7555-7565. [15] MARRA F, GRAGNANIELLO D, VERDOLIVA L, et al. Do GANs leave artificial fingerprints? [C]//Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2019: 506-511. [16] MCCLOSKEY S, ALBRIGHt M. Detecting GAN-generated imagery using color cues[J]. arXiv:1812.08247, 2018. [17] MCCLOSKEY S, ALBRIGHT M. Detecting GAN-generated imagery using saturation cues[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 4584-4588. [18] LI L Z, BAO J M, ZHANG T, et al. Face X-ray for more general face forgery detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion. Piscataway: IEEE, 2020: 5000-5009. [19] NATARAJ L, MOHAMMED T M, CHANDRASEKARAN S, et al. Detecting GAN generated fake images using co-occurrence matrices[J]. arXiv:1903.06836, 2019. [20] CORVI R, COZZOLINO D, ZINGARINI G, et al. On the detection of synthetic images generated by diffusion models[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [21] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [22] SONG J, MENG C, ERMON S. Denoising diffusion implicit models[J]. arXiv:2010.02502, 2020. [23] NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2021: 8162-8171. [24] DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[C]//Advances in Neural Information Processing Systems, 2021: 8780-8794. [25] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2009: 248-255. [26] YU F, SEFF A, ZHANG Y, et al. LSUN: construction of a large-scale image dataset using deep learning with humans in the loop[J]. arXiv:1506.03365, 2015. [27] KARRAS T, LAINE S, AILA T M. A style-based generator arc-hitecture for generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4396-4405. [28] BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[J]. arXiv:1809.11096, 2018. [29] HO J, SALIMANS T. Classifier-free diffusion guidance[J]. arXiv:2207.12598, 2022. [30] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CLIP latents[J]. arXiv:2204.06125, 2022. [31] NICHOL A, DHARIWAL P, RAMESH A, et al. Glide: towards photorealistic image generation and editing with text-guided diffusion models[J]. arXiv:2112.10741, 2021. [32] PEEBLES W, XIE S N. Scalable diffusion models with transformers[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4172-4182. [33] LI Z, LI H, SHI Y, et al. Dual diffusion for unified image generation and understanding[J]. arXiv:2501.00289, 2025. [34] ZHAO W, HAN Y, TANG J, et al. Dynamic diffusion transformer[J]. arXiv:2410.03456, 2024. [35] WANG Z D, BAO J M, ZHOU W G, et al. DIRE for diffusion-generated image detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 22388-22398. [36] CHEN B, ZENG J, YANG J, et al. DRCT: diffusion reconstruction contrastive training towards universal detection of diffusion generated images[C]//Proceedings of the 41st International Conference on Machine Learning, 2024. [37] MA R, DUAN J, KONG F, et al. Exposing the fake: effective diffusion-generated images detection[J]. arXiv:2307. 06272, 2023. [38] RICKER J, LUKOVNIKOV D, FISCHER A. AEROBLADE: training-free detection of latent diffusion images using autoencoder reconstruction error[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 9130-9140. [39] LUO Y P, DU J L, YAN K, et al. LaRE2: latent reconstruction error based method for diffusion-generated image detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 17006-17015. [40] SHEN C J, LIU Z J, CHEN K X, et al. Spatial-temporal reconstruction error for AIGC-based forgery image detection[C]//Proceedings of the 2025 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2025: 1-5. [41] CHU B, XU X, WANG X, et al. FIRE: robust detection of diffusion-generated images via frequency-guided reconstru-ction error[J]. arXiv:2412.07140, 2024. [42] COZZOLINO D, POGGI G, CORVI R, et al. Raising the bar of AI-generated image detection with CLIP[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 4356-4366. [43] LI J, LI D, XIONG C, et al. Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 12888-12900. [44] SHA Z Y, LI Z, YU N, et al. DE-FAKE: detection and attribution of fake images generated by text-to-image generation models[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2023: 3418-3432. [45] SANTOSH, LIN L, AMERINI I, et al. Robust CLIP-based detector for exposing diffusion model-generated images[C]//Proceedings of the 2024 IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2024: 1-7. [46] OJHA U, LI Y H, LEE Y J. Towards universal fake image detectors that generalize across generative models[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24480-24489. [47] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929,2020. [48] LIU H, TAN Z C, TAN C C, et al. Forgery-aware adaptive transformer for generalizable synthetic image detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 10770-10780. [49] KHAN S A, DANG-NGUYEN D T. CLIPping the deception: adapting vision-language models for universal deepfake detection[C]//Proceedings of the 2024 International Conference on Multimedia Retrieval. New York: ACM, 2024: 1006-1015. [50] ZHOU K Y, YANG J K, LOY C C, et al. Learning to prompt for vision-language models[J]. International Journal of Computer Vision, 2022, 130(9): 2337-2348. [51] TAN C C, TAO R S, LIU H, et al. C2P-CLIP: injecting category common prompt in CLIP to enhance generalization in deepfake detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2025: 7184-7192. [52] MOKADY R, HERTZ A, BERMANO A H. Clipcap: clip prefix for image captioning[J]. arXiv:2111.09734, 2021. [53] GUARNERA L, GIUDICE O, BATTIATO S. Mastering deepfake detection: a cutting-edge approach to distinguish GAN and diffusion-model images[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(11): 1-24. [54] XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Patt-ern Recognition. Piscataway: IEEE, 2017: 5987-5995. [55] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2017: 2261-2269. [56] NAMANI Y, REGHIOUA I, BENDIAB G, et al. DeepGuard: identification and attribution of AI-generated synthetic images[J]. Electronics, 2025, 14(4): 665. [57] TAN C C, LIU H, ZHAO Y, et al. Rethinking the up-sampling operations in CNN-based generative network for generalizable deepfake detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2024: 28130-28139. [58] AGHASANLI A, KANGIN D, ANGELOV P. Interpretable-through-prototypes deepfake detection for diffusion models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 467-474. [59] LORENZ P, DURALL R L, KEUPER J. Detecting images generated by deep diffusion models using their local intrinsic dimensionality[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 448-459. [60] LORENZ P, KEUPER M, KEUPER J. Unfolding local growth rate estimates for (almost) perfect adversarial detection[J]. arXiv:2212.06776, 2022. [61] LIU R, ZHANG S C, XU Y, et al. High-resolution network-based multi-feature fusion for generalized forgery detection[J]. Multimedia Systems, 2024, 31(1): 35. [62] KARAGEORGIOU D, PAPADOPOULOS S, KOMPATSIARIS I, et al. Any-resolution AI-generated image detection by spectral learning[J]. arXiv:2411.19417,2024. [63] LIANG Z Y, LIU W F, WANG R, et al. Transfer learning of real image features with soft contrastive loss for fake image detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2025: 26281-26289. [64] YAN S, LI O, CAI J, et al. A sanity check for AI-generated image detection[J]. arXiv:2406.19435, 2024. [65] CAI H, LIU C, SHEN S, et al. Robust AI-synthesized image detection via multi-feature frequency-aware learning[J]. arXiv:2504.02879, 2025. [66] LIM Y, LEE C, KIM A, ET Al. DistilDIRE: a small, fast, cheap and lightweight diffusion synthesized deepfake detection[J]. arXiv:2406.00856, 2024. [67] ZHU M, CHEN H, HUANG M, et al. Gendet: towards good generalizations for AI-generated image detection[J]. arXiv:2312.08880, 2023. [68] WANG Z J, MONTOYA E, MUNECHIKA D, et al. DiffusionDB: a large-scale prompt gallery dataset for text-to-image generative models[J]. arXiv:2210.14896, 2022. [69] ZHU M, CHEN H, YAN Q, et al. Genimage: a million-scale benchmark for detecting AI-generated image[C]//Advances in Neural Information Processing Systems, 2023: 77771-77782. [70] GU S Y, CHEN D, BAO J M, et al. Vector quantized diffusion model for text-to-image synthesis[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10686-10696. [71] SONG Y, SHI S M, LI J, et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 175-180. [72] BARALDI L, COCCHI F, CORNIA M, et al. Contrasting deepfakes diffusion via contrastive learning and global-local similarities[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 199-216. [73] SCHUHMANN C, VENCU R, BEAUMONT R, et al. Laion-400m: open dataset of clip-filtered 400 million image-text pairs[J]. arXiv:2111.02114, 2021. [74] BIRD J J, LOTFI A. CiFake: image classification and expla-inable identification of AI-generated synthetic images[J]. IEEE Access, 2024, 12: 15642-15650. [75] RAHMAN M A, PAUL B, SARKER N H, et al. ArtiFact: a large-scale dataset with artificial and factual images for generalizable and robust synthetic image detection[C]//Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 2200-2204. [76] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[J]. arXiv:1710.10196, 2017. [77] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer , 2014: 740-755. [78] LOGACHEVA E, SUVOROV R, KHOMENKO O, et al. DeepLandscape: adversarial modeling of landscape videos[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer , 2020: 256-272. [79] KARRAS T, AITTALA M, HELLSTEN J, et al. Training generative adversarial networks with limited data[C]//Advances in Neural Information Processing Systems, 2020: 12104-12114. [80] LIU L, REN Y, LIN Z, et al. Pseudo numerical methods for diffusion models on manifolds[J]. arXiv:2202.09778, 2022. [81] ZHANG L M, RAO A Y, AGRAWALA M. Adding conditional control to text-to-image diffusion models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3813-3824. [82] LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738. [83] HE Z L, ZUO W M, KAN M N, et al. AttGAN: facial attribute editing by only changing what you want[J]. IEEE Transa-ctions on Image Processing, 2019, 28(11): 5464-5478. [84] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. [85] CHO W, CHOI S, PARK D K, et al. Image-to-image transl-ation via group-wise deep whitening-and-coloring transformation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10631-10639. [86] LI K, ZHANG T H, MALIK J. Diverse image synthesis from semantic layouts via conditional IMLE[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4219-4228. [87] CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8789-8797. [88] CHOI Y, UH Y, YOO J, et al. StarGAN v2: diverse image synthesis for multiple domains[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8185-8194. [89] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8107-8116. [90] SCHUHMANN C, BEAUMONT R, VENCU R, et al. LAION-5B: an open large-scale dataset for training next generation image-text models[C]//Advances in Neural Information Processing Systems, 2022: 25278-25294. [91] RAZZHIGAEV A, SHAKHMATOV A, MALTSEVA A, et al. Kandinsky: an improved text-to-image synthesis with image prior and latent diffusion[J]. arXiv:2310.03502, 2023. [92] DANG-NGUYEN D T, PASQUINI C, CONOTTER V, et al. RAISE: a raw images dataset for digital image forensics[C]//Proceedings of the 6th ACM Multimedia Systems Conference. New York: ACM, 2015: 219-224. [93] KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]//Advances in Neural Information Processing Systems, 2021: 852-863. [94] SAUER A, KARRAS T, LAINE S, et al. StyleGAN-T: unl-ocking the power of GANs for fast large-scale text-to-image synthesis[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 30105-30118. [95] KANG M, ZHU J Y, ZHANG R, et al. Scaling up GANs for text-to-image synthesis[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10124-10134. [96] SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[J]. arXiv:2011.13456, 2020. [97] BALAJI Y, NAH S, HUANG X, ET Al. eDiff-I: text-to-image diffusion models with an ensemble of expert denoisers[J]. arXiv:2211.01324, 2022. [98] YOUNG P, LAI A, HODOSH M, et al. From image descri-ptions to visual denotations: new similarity metrics for sema-ntic inference over event descriptions[J]. Transactions of the Association for Computational Linguistics, 2014, 2: 67-78. [99] PARK T, LIU M Y, WANG T C, et al. Semantic image synthesis with spatially-adaptive normalization[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2332-2341. [100] CHEN Q F, KOLTUN V. Photographic image synthesis with cascaded refinement networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1520-1529. [101] DAI T, CAI J R, ZHANG Y B, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11057-11066. [102] CHEN C, CHEN Q, XU J, et al. Learning to see in the dark[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3291-3300. [103] ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1-11. [104] CHAN E R, LIN C Z, CHAN M A, et al. Efficient geometry-aware 3D generative adversarial networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16102-16112. [105] ESSER P, ROMBACH R, OMMER B. Taming transformers for high-resolution image synthesis[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12868-12878. [106] GUPTA Y, JADDIPAL V V, PRABHALA H, et al. Progressive knowledge distillation of stable diffusion XL using layer level loss[J]. arXiv:2401.02677, 2024. [107] WANG Z, ZHENG H, HE P, et al. Diffusion-GAN: training GANs with diffusion[J]. arXiv:2206.02262, 2022. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||