计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 167-178.DOI: 10.3778/j.issn.1002-8331.2502-0209

• 图形图像处理 • 上一篇    下一篇

DFC-YOLO:金属表面多尺度与相似性缺陷目标检测方法

王坤,李锦华   

  1. 中国民航大学 电子信息与自动化学院,天津 300300
  • 出版日期:2025-10-01 发布日期:2025-09-30

DFC-YOLO:Multi-Scale and Similarity Defect Target Detection Method for Metal Surfaces

WANG Kun, LI Jinhua   

  1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 为减少金属表面缺陷检测任务中的误检和漏检问题,提升模型对多尺度和相似性缺陷的检测能力,提出一种DFC-YOLO检测方法。设计多样性特征提取模块(DFEM)对经过SPPF处理后的多尺度信息进行更加全面的特征提取,提高对不同尺度目标的检测精度。设计特征处理模块(FPM)实现浅层与深层特征信息融合,利用浅层特征提取模块(SFEM)充分挖掘浅层的关键信息,减少背景噪声干扰,提升模型对相似性目标的识别能力。为了在不显著增加内存和计算成本的情况下,进一步增强模型对多尺度特征的提取和融合能力,提出C2f_RFEM模块,利用感受野扩张模块(RFEM)扩大模型感受野,获取更多上下文信息,提高检测性能。实验结果显示,DFC-YOLO在GC10-DET数据集中mAP达到了77.60%,相较于基础模型提升3.60个百分点;在NEU-DET数据集中,mAP提升2.55个百分点。实验结果验证了所提方法的可行性与泛化性,表明其能够有效应用于金属表面缺陷检测任务。

关键词: YOLOv8, 金属表面缺陷检测, 特征提取, 多尺度, 注意力机制

Abstract: To reduce the problems of false positives and missed detections in metal surface defect detection task and enhance the model’s detection capability for multi-scale and similar defects, the DFC-YOLO detection approach is proposed. Firstly, the diversity feature extraction module (DFEM) is designed to extract more comprehensive features from the multi-scale information processed by SPPF, improving the detection accuracy of targets at different scales. Secondly, the feature processing module (FPM) is designed to integrate shallow and deep feature information, while the shallow feature extraction module (SFEM) is used to fully extract key information from the shallow layers, reducing interference from background noise and improving the model’s ability to recognize similar targets. Finally, in order to further enhance the model’s ability to extract and integrate multi-scale features without significantly increasing memory and computational costs, the C2f_RFEM module is proposed. This module uses the receptive field expansion module (RFEM) to enlarge the model’s receptive field, obtain more contextual information, and improve detection performance. The experimental results show that DFC-YOLO achieves a mAP of 77.60% on the GC10-DET dataset, which is 3.60 percentage points higher than the original network. On the NEU-DET dataset, the mAP increases by 2.55 percentage points. The experimental results validate the feasibility and generalization of the proposed method and demonstrate its effective application to metal surface defect detection.

Key words: YOLOv8, metal surface defect detection, feature extraction, multi-scale, attention mechanis