[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015.
[5] REDOM J. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.
10934, 2020.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] ZHENG G, SONGTAO L, FENG W, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[9] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[10] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[11] TIAN Y, YE Q, DOERMANN D. YOLOv12: attention-centric real-time object detectors[J]. arXiv:2502.12524, 2025.
[12] ZHANG Y Z, WANG W J, LI Z M, et al. Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105628.
[13] LIU R Q, HUANG M, GAO Z M, et al. MSC-DNet: an efficient detector with multi-scale context for defect detection on strip steel surface[J]. Measurement, 2023, 209: 112467.
[14] ZENG Q T, WEI D B, ZOU M H. Rtsds: a real-time and efficient method for detecting surface defects in strip steel[J]. Journal of Real-Time Image Processing, 2024, 21(4): 117.
[15] LIU G H, CHU M X, GONG R F, et al. Global attention module and cascade fusion network for steel surface defect detection[J]. Pattern Recognition, 2025, 158: 110979.
[16] WANG C J, HU J Q, YANG C Y, et al. DES-YOLO: a novel model for real-time detection of casting surface defects[J]. PeerJ Computer Science, 2024, 10: e2224.
[17] LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors, 2020, 20(6): 1562.
[18] HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504.
[19] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[22] LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[24] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning. New York: ACM, 2021: 11863-11874.
[25] XU W S, ZHANG Y F, JIANG X H, et al. An efficient steel defect detection model based on multi-scale information extraction[J]. Robotic Intelligence and Automation, 2024, 44(6): 817-829.
[26] LIU L J, ZHANG Y, KARIMI H R. Resilient machine learning for steel surface defect detection based on lightweight convolution[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(9): 4639-4650.
[27] YOU C Z, KONG H Z. Improved steel surface defect detection algorithm based on YOLOv8[J]. IEEE Access, 2024, 12: 99570-99577. |