[1] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42.
ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42.
[2] ZHAI F B, LI B Z. Point of interest recommendation based on graph convolutional neural network[J]. Journal of Physics: Conference Series, 2021, 1883(1): 012132.
[3] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
[4] GUO Q Y, ZHUANG F Z, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549-3568.
[5] WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844.
[6] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 2000-2010.
[7] HUANG X W, FANG Q, QIAN S S, et al. Explainable interaction-driven user modeling over knowledge graph for sequential recommendation[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 548-556.
[8] MA W Z, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 1210-1221.
[9] TU K, CUI P, WANG D X, et al. Conditional graph attention networks for distilling and refining knowledge graphs in recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1834-1843.
[10] 张彬, 郝利新, 张国防. 融合元图邻域的知识图谱推荐模型[J]. 计算机应用研究, 2024, 41(8): 2412-2418.
ZHANG B, HAO L X, ZHANG G F. Knowledge graph recommendation model with integrated meta-graph neighborhoods[J]. Application Research of Computers, 2024, 41(8): 2412-2418.
[11] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
[12] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.
[13] NICKEL M, TRESP V, KRIEGAL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816.
[14] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[15] CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 151-161.
[16] ZHANG C Y, WANG Y, ZHU L, et al. Multi-graph heterogeneous interaction fusion for social recommendation[J]. ACM Transactions on Information Systems, 2022, 40(2): 1-26.
[17] WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887.
[18] 张小婉, 邓秋军, 柳先辉. 结合图注意力机制的知识图谱推荐算法[J]. 计算机科学, 2023, 50(S2): 464-470.
ZHANG X W, DENG Q J, LIU X H. Knowledge map recommendation algorithm based on graph attention mechanism[J]. Computer Science, 2023, 50(S2): 464-470.
[19] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
ZHU D L, WEN Y, WAN Z C. Review of recommendation systems based on knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13.
[20] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph self-supervised rationalization for recommendation[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3046-3056.
[21] LYU Z Y, WU Y, LAI J J, et al. Knowledge enhanced graph neural networks for explainable recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4954-4968.
[22] XU Z M, LIU H L, LI J, et al. CKGAT: collaborative knowledge-aware graph attention network for top-N recommendation[J]. Applied Sciences, 2022, 12(3): 1669.
[23] CHEN Y K, YANG M L, ZHANG Y X, et al. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 94-102.
[24] ZHAO N, LONG Z, WANG J, et al. AGRE: a knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder[J]. Knowledge-Based Systems, 2023, 259: 110078.
[25] WANG H, ZHANG F, ZHAO M, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 973-982.
[26] LIU Y, YANG S S, XU Y H, et al. Contextualized graph attention network for recommendation with item knowledge graph[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 181-195.
[27] MA T, HUANG L T, LU Q Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-27. |