[1] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600.
[2] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[3] VRANDE?I? D, KR?TZSCH M. Wikidata[J]. Communic-ations of the ACM, 2014, 57(10): 78-85.
[4] LEHMANN J, ISELE R, JAKOB M, et al. DBpedia a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
[5] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706.
[6] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606.
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606.
[7] 张天成, 田雪, 孙相会, 等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2023, 34(1): 277-311.
ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1): 277-311.
[8] DAI Y F, WANG S P, XIONG N N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9(5): 750.
[9] WANG M H, QIU L L, WANG X L. A survey on knowledge graph embeddings for link prediction[J]. Symmetry, 2021, 13(3): 485.
[10] TAN Z X, CHEN Z L, FENG S B, et al. KRACL: contrastive learning with graph context modeling for sparse knowledge graph completion[J]. arXiv:2208.07622, 2022.
[11] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[12] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696.
[13] WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[14] 杜晓娟, 陶以政, 李龚亮. Trans 系列知识表示方法发展研究[J]. 计算机与数字工程, 2023, 51(11): 2515-2517.
DU X J, TAO Y Z, LI G L. Research on development of Trans knowledge representation methods[J]. Computer & Digital Engineering, 2023, 51(11): 2515-2517.
[15] YANG B, YIH W, HE X, et al. Embedding entities and rel-ations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[16] TROUILLON T, WELBL J, RIEDEL S, et al. Complex emb-eddings for simple link prediction[C]//Proceedings of the 33rd International Conference on International Conference on Mac-hine Learning, 2016: 2071-2080.
[17] VILNIS L, LI X, MURTY S, et al. Probabilistic embedding of knowledge graphs with box lattice measures[J]. arXiv:1805.06627, 2018.
[18] BALA?EVI? I, ALLEN C, HOSPEDALES T M. TuckER: tensor factorization for knowledge graph completion[J]. arXiv:1901.09590, 2019.
[19] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818.
[20] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[J]. arXiv: 1703.06103, 2017.
[21] CAO J X, LIN X X, GUO S, et al. Bipartite graph embedding via mutual information maximization[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 635-643.
[22] LIU C, YU C H, GUI N, et al. SimGCL: graph contrastive learning by finding homophily in heterophily[J]. Knowledge and Information Systems, 2024, 66(3): 2089-2114.
[23] WANG P, AGARWAL K, HAM C, et al. Self-supervised learning of contextual embeddings for link prediction in heterogeneous networks[J]. arXiv:2007.11192, 2020.
[24] KRISTIADI A, KHAN M A, LUKOVNIKOV D, et al. Incorporating literals into knowledge graph embeddings[J]. arXiv:1802.00934, 2018.
[25] GARCíA-DURáN A, NIEPERT M. KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features[J]. arXiv:1709.04676, 2017.
[26] TAY Y, TUAN L A, PHAN M C, et al. Multi-task neural network for non-discrete attribute prediction in knowledge graphs[C]//Proceedings of the ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1029-1038.
[27] KIM G, KIM S, KIM K K, et al. Exploiting relation-aware attribute representation learning in knowledge graph embedding for numerical reasoning[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 1086-1096.
[28] ZHANG Z Q, CAI J Y, ZHANG Y D, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3065-3072.
[29] ALLEN C, BALAZEVIC I, HOSPEDALES T M. On understanding knowledge graph representation[J]. arXiv:1909.11611, 2019.
[30] BALAZEVIC I, ALLEN C, HOSPEDALES T. Multi-relational poincaré graph embeddings[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 4463-4473. |