[1] JIN X Q, ZHANG D W, WU Q E, et al. Improved SiamCAR with ranking-based pruning and optimization for efficient UAV tracking[J]. Image and Vision Computing, 2024, 141: 104886.
[2] HU Y Y, WU X J, ZHENG G D, et al. Object detection of UAV for anti-UAV based on improved YOLO v3[C]//Proceedings of the 2019 Chinese Control Conference. Piscataway: IEEE, 2019: 8386-8390.
[3] 张瑞鑫, 黎宁, 张夏夏, 等. 基于优化CenterNet的低空无人机检测方法[J]. 北京航空航天大学学报, 2022, 48(11): 2335-2344.
ZHANG R X, LI N, ZHANG X X, et al. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344.
[4] 包文歧, 谢立强, 徐才华, 等. 基于YOLOv5的微小型无人机实时探测方法[J]. 兵器装备工程学报, 2022, 43(5): 232-237.
BAO W Q, XIE L Q, XU C H, et al. Real-time detection method of micro UAV based on YOLOv5[J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 232-237.
[5] LIU B L, LUO H. An improved YOLOv5 for multi-rotor UAV detection[J]. Electronics, 2022, 11(15): 2330.
[6] 彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法[J]. 计算机工程与应用, 2024, 60(5): 183-190.
PENG Y F, ZHAO T, CHEN Y K, et al. UAV small object detection algorithm based on context information and feature refinement[J]. Computer Engineering and Applications, 2024, 60(5): 183-190.
[7] LV Y W, AI Z Q, CHEN M F, et al. High-resolution drone detection based on background difference and SAG-YOLOv5s[J]. Sensors, 2022, 22(15): 5825.
[8] 薛珊, 王亚博, 吕琼莹, 等. 基于YOLOX-drone的反无人机系统抗遮挡目标检测算法[J]. 工程科学学报, 2023, 45(9): 1539-1549.
XUE S, WANG Y B, LV Q Y, et al. Anti-occlusion target detection algorithm for anti-UAV system based on YOLOX-drone[J]. Chinese Journal of Engineering, 2023, 45(9): 1539-1549.
[9] GLENN J. YOLOv5 releases v6.1[CP/OL]. (2022-02-07)[2024-06-20]. https://github.com/ultralytics/yolov5/releases/tag/v6.1.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[11] 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55.
XIE W Y, ZHANG Q. Review on detection of drones and birds in photoelectric images based on deep learning convolutional neural network[J]. Computer Engineering and Applications, 2024, 60(8): 46-55.
[12] WANG A, CHEN H, LIN Z J, et al. RepViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15909-15920.
[13] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737.
[14] HE J J, WANG Y C, WANG Y T, et al. A lightweight road crack detection algorithm based on improved YOLOv7 model[J]. Signal, Image and Video Processing, 2024, 18(1): 847-860.
[15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[16] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[17] TANG F L, XU Z X, HUANG Q M, et al. DuAT: dual-aggregation transformer network for medical image segmentation[C]//Proceedings of the 6th Chinese Conference on Pattern Recognition and Computer Vision. Singapore: Springer, 2023: 343-356.
[18] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[19] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[20] 周孟然, 王澳. 基于DETR的轻量级遥感图像目标检测算法[J/OL]. 重庆工商大学学报(自然科学版) [2024-06-25]. http://kns.cnki.net/kcms/detail/50.1155.N.20240328.1703. 004.html.
ZHOU M R, WANG A. Lightweight remote sensing image object detection algorithm based on DETR[J/OL]. Journal of Chongqing Technology and Business University (Natural Science Edition) [2024-06-25]. http://kns.cnki.net/kcms/detail/50.1155.N.20240328.1703.004.html.
[21] ZHANG H, ZHANG S. Shape-IOU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312. 17663, 2023.
[22] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[23] MUNIR A, SIDDIQUI A J, ANWAR S. Investigation of UAV detection in images with complex backgrounds and rainy artifacts[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Piscataway: IEEE, 2024: 232-241.
[24] ZHENG Y, CHEN Z, LV D L, et al. Air-to-air visual detection of micro-UAVs: an experimental evaluation of deep learning[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1020-1027.
[25] COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone vs. bird detection: deep learning algorithms and results from a grand challenge[J]. Sensors, 2021, 21(8): 2824.
[26] ZHAO J, ZHANG J S, LI D D, et al. Vision-based anti-UAV detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25323-25334.
[27] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural net-works[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[29] XU W, WAN Y. ELA: efficient local attention for deep convolutional neural networks[J]. arXiv:2403.01123, 2024.
[30] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[31] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
[32] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[33] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[34] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[35] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[36] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[37] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[38] FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3490-3499.
[39] DU D W, ZHU P F, WEN L Y, et al. VisDrone-SOT2019: the vision meets drone single object tracking challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 199-212.
[40] 高民, 陈高华, 古佳欣, 等. FLM-YOLOv8: 一种轻量级的口罩佩戴检测算法[J]. 计算机工程与应用, 2024, 60(17): 203-215.
GAO M, CHEN G H, GU J X, et al. FLM-YOLOv8: lightweight mask wearing detection algorithm[J]. Computer Engineering and Applications, 2024, 60(17): 203-215. |