[1] 张毅, 张焱, 张宇, 等. 基于多级特征增强融合的红外飞机目标检测方法[J]. 航空学报, 2023, 44(22): 48-62.
ZHANG Y, ZHANG Y, ZHANG Y, et al. Infrared aircraft target detection method based on multi-level feature enhancement fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 48-62.
[2] WANG X, LU R, BI H, et al. An infrared small target detection method based on attention mechanism[J]. Sensors (Basel, Switzerland), 2023, 23(20): 8608.
[3] 刘春磊, 陈天恩, 王聪, 等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73.
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73.
[4] 张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11.
ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection[J]. Computer Engineering and Applications, 2022, 58(5): 1-11.
[5] WU J P, ZENG J J, ZHOU Y B, et al. Few-shot electrical equipment image recognition method based on an improved two-stage fine-tuning approach[J]. The Journal of Engineering, 2023(9): e12313.
[6] FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4013- 4022.
[7] 丁政伟, 白鹤翔, 胡深. 多尺度深层特征加强的CME小样本目标检测模型[J]. 计算机工程与应用, 2024, 60(6): 222-229.
DING Z W, BAI H X, HU S. CME-based few-shot detection model with enhanced multiscale deep features[J]. Computer Engineering and Applications, 2024, 60(6): 222-229.
[8] TIAN Y J, ZHAO X X, HUANG W. Meta-learning approaches for learning-to-learn in deep learning: a survey[J]. Neurocomputing, 2022, 494: 203-223.
[9] YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585.
[10] AMJOUD A B, AMROUCH M. Object detection using deep learning, CNNs and vision transformers: a review[J]. IEEE Access, 2023, 11: 35479-35516.
[11] 华杰, 刘学亮, 赵烨. 基于特征融合的小样本目标检测[J]. 计算机科学, 2023, 50(2): 209-213.
HUA J, LIU X L, ZHAO Y. Few-shot object detection based on feature fusion[J]. Computer Science, 2023, 50(2): 209-213.
[12] 李丽芬, 范新烨. 元学习与多尺度特征融合的小样本目标检测[J]. 小型微型计算机系统, 2023, 44(12): 2804-2811.
LI L F, FAN X Y. Few-shot object detection with meta-learning and multi-scale feature fusion[J]. Journal of Chinese Computer Systems, 2023, 44(12): 2804-2811.
[13] KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428.
[14] 李红光, 王玉峰, 杨丽春. 基于元学习的小样本遥感图像目标检测[J]. 北京航空航天大学学报, 2024, 50(8): 2503-2513.
LI H G, WANG Y F, YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2503-2513.
[15] 金璐. 少样本条件下的红外空中目标识别与检测技术研究[D]. 上海: 中国科学院大学 (中国科学院上海技术物理研究所), 2020.
JIN L. Research on key technologies of infrared aerial target recognition and detection with few shots[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2020.
[16] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[17] LI B H, YANG B Y, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7359-7368.
[18] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[19] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542.
[20] WOO S, PARK J, LEE J F, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] DONG Z, WANG Q L, ZHU P F. Multi-head second-order pooling for graph transformer networks[J]. Pattern Recognition Letters, 2023, 167: 53-59.
[22] LI E Z, SAMAT A, ZHANG C, et al. First and second-order information fusion networks for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8014405.
[23] WANG Z W, DONG W, ZHANG B B, et al. GSoANet: group second-order aggregation network for video action recognition[J]. Neural Processing Letters, 2023, 55(6): 7493-7509.
[24] DAI T, CAI J R, ZHANG Y B, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11057-11066.
[25] GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3019-3028.
[26] SUN B, LI B H, CAI S C, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358. |