[1] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680.
[2] HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851.
[3] NGUYEN H H, YAMAGISHI J, ECHIZEN I. Use of a capsule network to detect fake images and videos[J]. arXiv:1910.12467, 2019.
[4] RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics: learning to detect manipulated facial images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1-11.
[5] ZHU X Y, WANG H, FEI H Y, et al. Face forgery detection by 3D decomposition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2928-2938.
[6] DURALL R, KEUPER M, PFREUNDT F J, et al. Unmasking DeepFakes with simple features[J]. arXiv:1911.00686, 2019.
[7] QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103.
[8] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[9] BAO H B, DONG L, PIAO S H, et al. BEiT: BERT pre-training of image transformers[J]. arXiv:2106.08254, 2021.
[10] WANG J K, WU Z X, OUYANG W H, et al. M2TR: multi-modal multi-scale transformers for deepfake detection[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval, 2022: 615-623.
[11] LUO Y C, ZHANG Y, YAN J C, et al. Generalizing face forgery detection with high-frequency features[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16312-16321.
[12] FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882.
[13] FANG Y X, SUN Q, WANG X G, et al. EVA-02: a visual representation for neon genesis[J]. arXiv:2303.11331, 2023.
[14] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[J]. arXiv:2106.09685, 2021.
[15] LI L Z, BAO J M, ZHANG T, et al. Face X-ray for more general face forgery detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5000-5009.
[16] ZHANG B G, LI S, FENG G R, et al. Patch diffusion: a general module for face manipulation detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3243-3251.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[18] ZHAO H Q, WEI T Y, ZHOU W B, et al. Multi-attentional deepfake detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2185-2194.
[19] WODAJO D, ATNAFU S. Deepfake video detection using convolutional vision transformer[J]. arXiv:2102.11126, 2021.
[20] LESTER B, AL-RFOU R, CONSTANT N, et al. The power of scale for parameter-efficient prompt tuning[J]. arXiv:2104.08691, 2021.
[21] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 2790-2799.
[22] JIA M, TANG L, CHEN B C, et al. Visual prompt tuning[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 709-727.
[23] CHEN Z, DUAN Y C, WANG W H, et al. Vision transformer adapter for dense predictions[J]. arXiv:2205.08534, 2022.
[24] SHAO R, WU T X, NIE L Q, et al. DeepFake-adapter: dual-level adapter for DeepFake detection[J]. arXiv:2306.00863, 2023.
[25] AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning[J]. arXiv:2012.13255, 2020.
[26] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv:1710.05941, 2017.
[27] CAO B, GUO J L, ZHU P F, et al. Bi-directional adapter for multimodal tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(2): 927-935.
[28] LI Y Z, YANG X, SUN P, et al. Celeb-DF: a large-scale challenging dataset for DeepFake forensics[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3204-3213.
[29] DOLHANSKY B, BITTON J, PFLAUM B, et al. The DeepFake detection challenge (DFDC) dataset[J]. arXiv:2006. 07397, 2020.
[30] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[31] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. arXiv:1512.03385, 2015.
[32] COCCOMINI D A, MESSINA N, GENNARO C, et al. Combining EfficientNet and vision transformers for video deepfake detection[C]//Proceedings of the 21st International Conference on Image Analysis and Processing. Cham: Springer, 2022: 219-229.
[33] CHEN L, ZHANG Y, SONG Y B, et al. Self-supervised learning of adversarial example: towards good generalizations for deepfake detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18689-18698.
[34] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6105-6114.
[35] WAN D, CAI M C, PENG S F, et al. Deepfake detection algorithm based on dual-branch data augmentation and modified attention mechanism[J]. Applied Sciences, 2023, 13(14): 8313. |