计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 159-170.DOI: 10.3778/j.issn.1002-8331.2502-0097

• 目标检测专题 • 上一篇    下一篇

D3F-DET:轻量化多尺度融合的路面缺陷检测算法

贾翔宇,张永宏,阚希,朱灵龙,李旭   

  1. 1.南京信息工程大学 自动化学院,南京 210044
    2.南京信息工程大学 江苏省大气环境与装备技术协同创新中心,南京 210044
    3.无锡学院 物联网工程学院, 江苏 无锡 214105
  • 出版日期:2025-09-01 发布日期:2025-09-01

D3F-DET: Lightweight and Multiscale Fusion Algorithm for Pavement Defect Detection

JIA Xiangyu, ZHANG Yonghong, KAN Xi, ZHU Linglong, LI Xu   

  1. 1.School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.Jiangsu Provincial Collaborative Innovation Center for Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3.School of Internet Engineering, Wuxi University, Wuxi, Jiangsu 214105, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 针对当前道路缺陷检测算法检测精度低、漏检误检率高、泛化能力欠佳的问题,提出了一种改进的轻量化检测模型,模型包含三种核心模块:轻量化双分支动态融合网络、动态重排列自注意力机制和跨分支交叉特征融合金字塔架构。轻量化双分支动态融合网络通过在双分支主干间共享信息,减少参数量的同时实现了特征空间的高效融合;动态重排列自注意力机制提供动态范围内的自适应特征聚合,显著提高了对动态范围变化目标的检测精度;跨分支交叉特征融合金字塔架构采用双向特征交互,增强了全局语义信息和局部细节特征的融合能力。实验结果表明,该模型在NRDD-2024数据集上的mAP@0.5达到了77.2%,对比最新的实时目标检测器RT-DETR参数量降低了29.63%,计算量降低了40.35%,精度提升了2个百分点,热力图对比显示模型可以给予更合适的注意力,同时对于新数据集展现出良好的泛化能力,为嵌入式设备上的实时路面缺陷检测提供了高效可靠的解决方案。

关键词: 道路缺陷检测, 目标检测, 轻量化网络, 深度学习, RT-DETR

Abstract: To address the current issues of low detection accuracy, high false negative and false positive rates, and poor generalization ability in road defect detection algorithms, an improved lightweight detection model is proposed. The model consists of three core modules: a lightweight dual-branch dynamic fusion network, a dynamic rearranged self-attention mechanism, and a cross-branch cross-feature fusion pyramid architecture. The lightweight dual-branch dynamic fusion network efficiently fuses feature spaces while reducing the number of parameters by sharing information between the dual branches. The dynamic rearranged self-attention mechanism provides adaptive feature aggregation within a dynamic range, significantly improving detection accuracy for targets with varying ranges. The cross-branch cross-feature fusion pyramid architecture enhances the fusion of global semantic information and local detailed features through bidirectional feature interaction. Experimental results show that the model achieves a mAP@0.5 of 77.2% on the NRDD-2024 dataset. Compared to the latest real-time object detector RT-DETR, the model reduces the number of parameters by 29.63%, decreases computational cost by 40.35%, and improves accuracy by 2 percentage points. Heatmap comparisons demonstrate that the model can provide more appropriate attention, and it shows good generalization ability on new datasets, offering an efficient and reliable solution for real-time road defect detection on embedded devices.

Key words: road defect detection, target detection, lightweight networks, deep learning, RT-DETR