[1] 姚恩建. 综合立体交通专刊[J]. 北京交通大学学报, 2024, 48(4): 3.
YAO E J. Comprehensive three-dimensional transportation special issue[J]. Journal of Beijing Jiaotong University, 2024, 48(4): 3.
[2] 徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190.
XU Z G, CHE Y L, LI J L, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190.
[3] SZEGEDY C, TOSHEV A, ERHAN D. Deep neural networks for object detection[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2553 - 2561.
[4] ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[5] MAJIDIFARD H, ADU-GYAMFI Y, BUTTLAR W G. Deep machine learning approach to develop a new asphalt pavement condition index[J]. Construction and Building Materials, 2020, 247: 118513.
[6] WANG Q L, MAO J C, ZHAI X, et al. Improvements of YOLOv3 for road damage detection[J]. Journal of Physics: Conference Series, 2021, 1903(1): 012008.
[7] GUO G, ZHANG Z. Road damage detection algorithm for improved YOLOv5[J]. Scientific Reports, 2022, 12(1): 15523.
[8] DUAN K W, XIE L X, QI H G, et al. Corner proposal network for anchor-free, two-stage object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 399-416.
[9] 向宽, 李松松, 栾明慧, 等. 基于改进 Faster RCNN 的铝材表面缺陷检测方法[J]. 仪器仪表学报, 2021, 42(1): 191-198.
XIANG K, LI S S, LUAN M H, et al. Aluminum product surface defect detection method based on improved Faster RCNN[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 191-198.
[10] 伊欣同, 单亚峰. 基于改进Faster R-CNN的光伏电池内部缺陷检测[J]. 电子测量与仪器学报, 2021, 35(1): 40-47.
YI X T, SHAN Y F. Photovoltaic cell internal defect detection based on improved Faster R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 40-47.
[11] HOSANG J, BENENSON R, SCHIELE B. Learning non-maximum suppression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6469-6477.
[12] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[13] HAN K, XIAO A, WU E, et al. Transformer in transformer[J]. arXiv:2103.00112, 2021.
[14] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[15] ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[16] LUO G, HUANG M, ZHOU Y, et al. Towards efficient visual adaption via structural re-parameterization[J]. arXiv:2302. 08106, 2023.
[17] TARG S, ALMEIDA D, LYMAN K. ResNet in ResNet: generalizing residual architectures[J]. arXiv:1603.08029, 2016.
[18] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[19] YUE M, ZHANG L Q, HUANG J, et al. Lightweight and efficient tiny-object detection based on improved YOLOv8n for UAV aerial images[J]. Drones, 2024, 8(7): 276.
[20] JIN Y, TIAN X Y, ZHANG Z, et al. C2F: an effective coarse-to-fine network for video summarization[J]. Image and Vision Computing, 2024, 144: 104962.
[21] ZHANG P F, LO E, LU B T. High performance depthwise and pointwise convolutions on mobile devices[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 6795-6802.
[22] LI H F, ZHAO J Z, LI J X, et al. Feature dynamic alignment and refinement for infrared-visible image fusion: translation robust fusion[J]. Information Fusion, 2023, 95: 26-41.
[23] SUN S Q, REN W Q, GAO X W, et al. Restoring images in adverse weather conditions via histogram transformer[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2025: 111-129.
[24] KAYA ?, ?ODUR M Y. N-RDD2024: road damage and defects[EB/OL]. (2024-01-09) [2025-01-01]. https://data.mendeley.com/datasets/27c8pwsd6v/4.
[25] JIANG H, LEARNED-MILLER E. Face detection with the faster R-CNN[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE, 2017: 650-657.
[26] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/YOLOv5: v7.0-YOLOv5 sota realtime instance segmentation[J]. Zenodo, 2022.
[27] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209. 02976, 2022.
[28] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[29] JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLO (version 8.0.0)[computer software][EB/OL]. (2023-12-01) [2024-07-10]. https://docs.ultralytics.com/zh/models/yolov8.
[30] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv: 2309.11331, 2023.
[31] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[32] WANG Z, LI C, XU H, et al. Mamba YOLO: SSMs-Based YOLO for object detection[J]. arXiv:2406.05835, 2024.
[33] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi‐national image dataset for automatic road damage dete-ction[J]. Geoscience Data Journal, 2024, 11(4): 846-862. |