[1] 肖佳, 梅琦, 黄晓琪, 等. “双碳”目标下我国光伏发电技术现状与发展趋势[J]. 天然气技术与经济, 2022, 16(5): 64-69.
XIAO J, MEI Q, HUANG X Q, et al. Status quo and development trend of photovoltaic power-generating technology under the dual-carbon goal[J]. Natural Gas Technology and Economy, 2022, 16(5): 64-69.
[2] 李明东, 李婧雯. “双碳” 目标下中国分布式光伏发电的发展现状和展望[J]. 太阳能, 2023(5): 5-10.
LI M D, LI J W. Development status and prospects of distributed PV power generation in China under the goal of emission peak and carbon neutrality[J]. Solar Energy, 2023(5): 5-10.
[3] 吴涛, 赖菲. 基于LeNet-5模型的太阳能电池板缺陷识别分类[J]. 热力发电, 2019, 48(3): 120-125.
WU T, LAI F. Identification and classification of defects in solar cells based on LeNet-5 model[J]. Thermal Power Generation, 2019, 48(3): 120-125.
[4] 赵强, 刘胜杰, 韩东成, 等. 基于改进K均值聚类的光伏板缺陷检测方法[J]. 红外技术, 2024, 46(4): 475-482.
ZHAO Q, LIU S J, HAN D C, et al. Photovoltaic panel defect detection method based on improved K-means clustering[J]. China Industrial Economics, 2024, 46(4): 475-482.
[5] 管宽岐, 蔺雨桐, 赵雨薇, 等. 基于深度学习的航拍光伏板红外图像热斑检测方法研究[J]. 电子测量技术, 2022, 45(22): 75-81.
GUAN K Q, LIN Y T, ZHAO Y W, et al. Photovoltaic hot spot detection of aerial infrared image based on deep learning[J]. Electronic Measurement Technology, 2022, 45(22): 75-81.
[6] 张猛, 尹丽菊, 周辉, 等. 基于SimAM-Ada YOLOv5的太阳能电池表面缺陷检测[J]. 电子测量技术, 2023, 46(22): 17-25.
ZHANG M, YIN L J, ZHOU H, et al. Surface defect detection of solar cells based on SimAM-Ada YOLOv5[J]. Electronic Measurement Technology, 2023, 46(22): 17-25.
[7] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[9] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[11] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LUI H. YOLOv8-VSC: a lightweight surface defect detection algorithm for strip steel[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[12] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small target detection based on attention mechanism[J]. Acta Aeronautica ET Astronautica Sinica, 2024, 45(14): 90-101.
[13] 赵晓雨, 高林, 杨校李, 等. 融合注意力机制的YOLOv5光伏板电致发光图像缺陷检测算法[J]. 湖北民族大学学报 (自然科学版), 2023, 41(1): 65-70.
ZHAO X Y, GAO L, YANG X L, et al. Algorithm of YOLOv5 fusing attention mechanism for defect detection of photovoltaic panel electroluminescent image[J]. Journal of Hubei Minzu University (Natural Science Edition), 2023, 41(1): 65-70.
[14] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[15] WU W, LIU H, LI L, et al. Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image[J]. PLoS One, 2021, 16(10): e0259283.
[16] PAN Y Z, REN C, WU X H, et al. Real image denoising via guided residual estimation and noise correction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1994-2000.
[17] TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[18] 钟泳松, 徐凌桦, 周克. 基于改进SSD算法的光伏组件缺陷检测研究[J]. 微处理机, 2022, 43(1): 22-25.
ZHONG Y S, XU L H, ZHOU K. Research on defect detection of photovoltaic module based on improved SSD algorithm[J]. Microprocessors, 2022, 43(1): 22-25.
[19] ALI F, REDMON J. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[20] GUO S Q, GUO Z W, WANG Y L, et al. Detection method of photovoltaic panel defect based on improved mask R-CNN[J]. Journal of Internet Technology, 2022, 23(2): 397-406.
[21] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[22] JEGHAM N, CHAN Y K, MARWAN A, et al. Evaluating the evolution of YOLO (you only look once) models: a comprehensive benchmark study of YOLO11 and its predecessors[J]. arXiv:2411.00201, 2024.
[23] FAKHOURI F, FAKHOURI F, FRéMEAUX-BACCHI V, et al. C3 glomerulopathy: a new classification[J]. Nature Reviews Nephrology, 2010, 6(8): 494-499.
[24] HU J, LL S, GANG S, et al. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[25] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[26] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[27] ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[28] ZAK I, KATZ R, KLEIN I. MLCA-a machine learning framework for INS coarse alignment[J]. Sensors (Basel), 2020, 20(23): 6959.
[29] ZHOU H Y, LI J X, PENG J Q, et al. Triplet attention: rethinking the similarity in transformers[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2378-2388.
[30] YANG Z M, WANG X L, LI J G. EIoU: an improved vehicle detection algorithm based on VehicleNet neural network[J]. Journal of Physics: Conference Series, 2021, 1924(1): 012001.
[31] BIST R B, SUBEDI S, YANG X, et al. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens[J]. Agriengineering, 2023, 5(2): 905-923.
[32] ALSHAHRANI A, ALMATRAFI M M, MUSTAFA J I, et al. A children’s psychological and mental health detection model by drawing analysis based on computer vision and deep learning[J]. Engineering, Technology & Applied Science Research, 2024, 14(4): 15533-15540.
[33] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024. |