计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 123-134.DOI: 10.3778/j.issn.1002-8331.2412-0381

• 目标检测专题 • 上一篇    下一篇

基于改进YOLOv11n的光伏板异物与缺陷检测模型研究

韩涛,于帅帅,马玲,黄友锐,侯帅男,庞家乐   

  1. 1.安徽理工大学 电气与信息工程学院,安徽 淮南 232001
    2.安徽大学 电气与自动化学院,合肥 230601
    3.安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
  • 出版日期:2025-07-15 发布日期:2025-07-15

Research on Detection Model of Foreign Objects and Defects in Photovoltaic Panels Based on Improved YOLOv11n

HAN Tao, YU Shuaishuai, MA Ling, HUANG Yourui, HOU Shuainan, PANG Jiale   

  1. 1.School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
    2.School of Electrical and Automation, Anhui University, Hefei 230601, China
    3.School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 针对YOLOv11n在光伏板异物与缺陷检测中,检测精度低、计算资源要求高的问题,提出一种基于改进YOLOv11n的光伏板异物与缺陷检测算法FESI-YOLOv11n。采用C3k2_Faster_EMA模块替换C3k2模块,扩展初始卷积通道数,使网络能更高效地进行多尺度特征提取;提出一种重构的检测头,将多分支、多尺度思想与重参数化思想结合,提高单一卷积的特征提取能力;在特征融合前增加注意力机制模块SEAttention,减少计算量;使用Inner_DIoU损失函数代替CIoU损失函数,弥补边界框回归方法的不足,进一步提高检测能力。实验结果表明,与YOLOv11n模型相比,改进后的算法mAP50提高了3.6个百分点,mAP50-95提高了3.4个百分点,模型的参数量降低了21.29%,计算量降低了25.4%,证明改进后的算法能够更好地应用在光伏板异物与缺陷检测的任务中。

关键词: 光伏板, YOLOv11n, 异物检测, 缺陷检测

Abstract: To address the issues of low detection accuracy and high computational resource demands of YOLOv11n in photovoltaic panel foreign object and defect detection, this paper proposes an improved YOLOv11n-based algorithm named FESI-YOLOv11n. Firstly, the C3k2 module is replaced with the C3k2_Faster_EMA module, which expands the initial convolutional channels to enable more efficient multi-scale feature extraction. Secondly, a reconstructed detection head is proposed, integrating multi-branch and multi-scale design with re-parameterization to enhance the feature extraction capability of single convolutions. Thirdly, an SEAttention mechanism is added before feature fusion to reduce computational overhead. Finally, the Inner_DIoU loss function replaces the CIoU loss to address limitations in bounding box regression and further improve detection performance. Experimental results demonstrate that compared to the original YOLOv11n model, the improved algorithm achieves a 3.6 percentage points increase in mAP50 and a 3.4 percentage points improvement in mAP50-95, while reducing model parameters by 21.29% and computational load by 25.4%. These advancements validate the superior applicability of the proposed algorithm in detecting foreign objects and defects in photovoltaic panels.

Key words: solar photovoltaic panels, YOLOv11n, foreign object detection, defect detection