计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 132-143.DOI: 10.3778/j.issn.1002-8331.2502-0222

• 目标检测专题 • 上一篇    下一篇

MMF-YOLO晶圆模具表面微缺陷检测算法

冯金秋,燕芳,杨阳,李海宇   

  1. 内蒙古科技大学 自动化与电气工程学院,内蒙古 包头 014010
  • 出版日期:2025-08-01 发布日期:2025-07-31

MMF-YOLO Algorithm for Detection of Micro-Defects on Wafer Mold Surfaces

FENG Jinqiu, YAN Fang, YANG Yang, LI Haiyu   

  1. School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 针对晶圆模具表面微缺陷检测中面临的目标小、尺度变化大、背景复杂、检测精度较低等问题,提出了结合边缘信息聚焦和上下文信息融合扩散的微缺陷检测算法MMF-YOLO。使用边缘信息聚焦模块(edge information focusing module,EIFM)改进原网络中的C3k2,从多尺度边缘信息中选择与目标高度相关的关键特征。使用上下文信息融合扩散金字塔网络(context-fusion diffusion pyramid network,CFD-PN)结构,对颈部网络进行优化,通过提取各层次网络中特征在空间分辨率和语义信息上的不同表征,减少信息融合过程中特征的混淆和丢失。同时,引入ADown(adaptive down-sampling module)下采样模块,优化了卷积层中的参数数量和计算冗余,以减少模型的复杂度。使用特征尺度缩放检测头(feature scale-aware detection head,FSDH),通过使用共享卷积,减少网络储存开销。实验结果表明,MMF-YOLO算法相较于基线YOLOv11n,在晶圆模具表面微缺陷数据集上,mAP@0.5提升了6.93个百分点,更适用于晶圆模具表面微缺陷检测任务和嵌入式平台部署与推理。

关键词: 机器视觉, 微缺陷检测, 边缘信息增强, 上下文融合扩散金字塔, YOLOv11

Abstract: To address challenges such as small target size, significant scale variation, complex backgrounds, and low detection accuracy in micro-defect detection on wafer mold surfaces, this paper proposes the MMF-YOLO algorithm, which combines edge information focusing and context information fusion diffusion. Firstly, the edge information focusing module (EIFM) is introduced to enhance the C3k2 module in the original network, enabling the selection of key features highly correlated with the target from multi-scale edge information. Secondly, the context-fusion diffusion pyramid network (CFD-PN) structure is employed to optimize the neck network, reducing feature confusion and loss during information fusion by extracting multi-level representations of features in terms of spatial resolution and semantic information. Additionally, the adaptive down-sampling module (ADown) is incorporated to optimize the number of parameters and computational redundancy in convolutional layers, thereby reducing model complexity. Finally, the feature scale-aware detection head (FSDH) is utilized to minimize network storage overhead by employing shared convolutions. Experimental results demonstrate that the MMF-YOLO algorithm achieves a 6.93 percentage points improvement in mAP@0.5 compared to the baseline YOLOv11n on the wafer mold surface micro-defect dataset, making it more suitable for micro-defect detection tasks on wafer mold surfaces and deployment on embedded platforms for efficient inference.

Key words: machine vision, micro-defect detection, edge information enhancement, context-fusion diffusion pyramid, YOLOv11