[1] LONG Z X, YAN J D, PIAO M H. Multi-scale guidance diffusion network for wafer map defect recognition[J]. Expert Systems with Applications, 2025, 267: 126134.
[2] DU Z J, WANG R, CHEN X H, et al. Study of the impact of flake Al2O3 abrasive and N-n-butylimidazole in backside CMP (Chemical Mechanical Polishing) of TSV (Through Silicon Via) wafers[J]. Surfaces and Interfaces, 2025, 56: 105626.
[3] ZHANG L F, LU X C. Effects of process parameters and pattern densities on the performance of two-step chemical mech-anical polishing for cobalt interconnects[J]. Materials Science in Semiconductor Processing, 2025, 188: 109222.
[4] 胡志强, 吴一全. 基于机器视觉的半导体晶圆缺陷检测方法综述[J]. 中国图象图形学报, 2025, 30(1): 25-50.
HU Z Q, WU Y Q. Survey of semiconductor wafer defect detection method based on machine vision[J]. Journal of Image and Graphics, 2025, 30(1): 25-50.
[5] SATHISH E, MUTHUKUMAR R. AQU-FRC Net: automated soil prediction based on faster RCNN with Aquila optimiz-ation[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 167-180.
[6] 方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13): 11-18.
FANG L P, HE H J, ZHOU G M. Research overview of object detection methods[J]. Computer Engineering and Applications, 2018, 54(13): 11-18.
[7] YUAN J L. Brain tumor image segmentation method using hybrid attention module and improved mask RCNN[J]. Scientific Reports, 2024, 14: 20615.
[8] AJMI C, ZAPATA J, ELFERCHICHI S, et al. Advanced faster-RCNN model for automated recognition and detection of weld defects on limited X-ray image dataset[J]. Journal of Nondestructive Evaluation, 2023, 43(1): 14.
[9] HE X C, QIU Z J, ZENG Y Q, et al. Rib fracture detection model based on faster-RCNN-SE-FA algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2024, 38(14): 2452025.
[10] 周晓玲, 张朝霞, 鲁雅, 等. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209.
ZHOU X L, ZHANG Z X, LU Y, et al. SAR image recognition based on improved R-FCN[J]. Systems Engineering and Electronics, 2022, 44(4): 1202-1209.
[11] GANGA B, LATA B T, VENUGOPAL K R. Object detection and crowd analysis using deep learning techniques: comprehensive review and future directions[J]. Neurocomputing, 2024, 597: 127932.
[12] ZHENG X L, WANG H J, SHANG Y, et al. Starting from the structure: a review of small object detection based on deep learning[J]. Image and Vision Computing, 2024, 146: 105054.
[13] LU Z X, LIAO L C, XIE X G, et al. SCoralDet: efficient real-time underwater soft coral detection with YOLO[J]. Ecological Informatics, 2025, 85: 102937.
[14] YEERJIANG A, WANG Z, HUANG X, et al. YOLOv1 to YOLOv10: a comprehensive review of YOLO variants and their application in medical image detection[J]. Journal of Artificial Intelligence Practice, 2024, 7(3): 112-122.
[15] WU W H, LI Q. Machine vision inspection of electrical connectors based on improved YOLO v3[J]. IEEE Access, 2020, 8: 166184-166196.
[16] DAI J J, LI T P, XUAN Z L, et al. Automated defect analysis system for industrial computerized tomography images of solid rocket motor grains based on YOLO-V4 model[J]. Electronics, 2022, 11(19): 3215.
[17] ZHANG Y, GUO Z Y, WU J Q, et al. Real-time vehicle dete-ction based on improved YOLO v5[J]. Sustainability, 2022, 14(19): 12274.
[18] 朱玉敏, 孙光灵, 缪飞. 基于改进YOLOv8算法的鱼眼图像下行人检测[J]. 计算机科学与探索, 2025, 19(2): 443-453.
ZHU Y M, SUN G L, MIAO F. Pedestrian detection in fisheye images based on improved YOLOv8 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 443-453.
[19] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 42-52.
YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 42-52.
[20] 施宇, 王乐, 姚叶鹏, 等. 基于强化特征金字塔和聚焦损失的小目标检测[J]. 计算机科学与探索, 2025, 19(3): 693-702.
SHI Y, WANG L, YAO Y P, et al. Small object detection based on enhanced feature pyramid and focal-AIoU loss[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 693-702.
[21] XU J S, YANG S Y, LIANG Q, et al. Transillumination imaging for detection of stress cracks in maize kernels using modified YOLOv8 after pruning and knowledge distillation[J]. Computers and Electronics in Agriculture, 2025, 231: 109959.
[22] 彭杰, 苏盈盈, 杜谦, 等. RHL-YOLOv8: 一种轻量级的交通车辆检测算法[J/OL]. 电讯技术, 2025: 1-12(2025-01-26) [2025-02-10]. https://link.cnki.net/doi/10.20079/j.issn.1001-893x.240905002.
PENG J, SU Y Y, DU Q, et al. RHL-YOLOv8: a lightweight traffic vehicle detection algorithm[J/OL]. Telecommunication Engineering, 2025: 1-12 (2025-01-26) [2025-02-10]. https://link.cnki.net/doi/10.20079/j.issn.1001893x.240905002.
[23] 陈子豪, 张龙, 缪剑晖, 等. TAE-YOLO: 一种高效的轻量级铸件缺陷检测算法[J/OL]. 特种铸造及有色合金, 2025: 1-9 (2025-03-11) [2025-02-10]. https://link.cnki.net/doi/10. 15980/j.tzzz.t20240391.
CHEN Z H, ZHANG L, MIAO J H, et al. TAE-YOLO: an efficient lightweight casting defect detection algorithm[J/OL]. Special Casting & Nonferrous Alloys, 2025: 1-9 (2025-03-11) [2025-02-10]. https://link.cnki.net/doi/10.15980/j.tzzz.t20240391.
[24] 吴中凡, 陆小锋, 唐强达. 基于改进YOLOv5s的复杂施工现场吸烟检测[J]. 计算机技术与发展, 2024, 34(10): 31-37.
WU Z F, LU X F, TANG Q D. Smoking detection at construction site based on improved YOLOv5s[J]. Computer Technology and Development, 2024, 34(10): 31-37. |